Note
Go to the end to download the full example as a Python script or as a Jupyter notebook..
Cell tracking example#
This example demonstrates how the track layer is used for visualizing cell tracking data, by displaying 2D + time dataset of cells with colored properties for track-id.
Thanks to Dr. Alessia Ruggieri and Philipp Klein, Centre for Integrative Infectious Disease Research (CIID), University Hospital Heidelberg, Germany for the data. You can find the data on: https://doi.org/10.5281/zenodo.15597019
Downloading...
From: https://drive.google.com/uc?id=1tuHI_io67gVdFZBA5E97fXrAWaxI2cqi
To: /home/runner/work/docs/docs/.cache/napari cell tracking example/tmp9leirbs0
0%| | 0.00/455k [00:00<?, ?B/s]
100%|██████████| 455k/455k [00:00<00:00, 10.3MB/s]
Downloading...
From: https://drive.google.com/uc?id=1qhAbIZiEKfo_a38YFtw7KJ3JjEhicDeJ
To: /home/runner/work/docs/docs/.cache/napari_cell_tracking_example/tmplv7laeq1
0%| | 0.00/15.7M [00:00<?, ?B/s]
30%|██▉ | 4.72M/15.7M [00:00<00:00, 31.3MB/s]
87%|████████▋ | 13.6M/15.7M [00:00<00:00, 54.8MB/s]
100%|██████████| 15.7M/15.7M [00:00<00:00, 56.9MB/s]
/tmp/tmpbqdyg9d7/general_2d.zip: 0%| | 0.00/38.0M [00:00<?, ?iB/s]
/tmp/tmpbqdyg9d7/general_2d.zip: 28%|██▊ | 10.7M/38.0M [00:00<00:00, 112MiB/s]
/tmp/tmpbqdyg9d7/general_2d.zip: 60%|██████ | 22.9M/38.0M [00:00<00:00, 122MiB/s]
/tmp/tmpbqdyg9d7/general_2d.zip: 92%|█████████▏| 35.1M/38.0M [00:00<00:00, 124MiB/s]
/tmp/tmpbqdyg9d7/general_2d.zip: 100%|██████████| 38.0M/38.0M [00:00<00:00, 123MiB/s]
Extracting features: 0%| | 0/30 [00:00<?, ?it/s]
Extracting features: 17%|█▋ | 5/30 [00:00<00:00, 46.66it/s]
Extracting features: 33%|███▎ | 10/30 [00:00<00:00, 46.72it/s]
Extracting features: 50%|█████ | 15/30 [00:00<00:00, 47.73it/s]
Extracting features: 67%|██████▋ | 20/30 [00:00<00:00, 47.03it/s]
Extracting features: 83%|████████▎ | 25/30 [00:00<00:00, 46.43it/s]
Extracting features: 100%|██████████| 30/30 [00:00<00:00, 47.26it/s]
Building windows: 0%| | 0/27 [00:00<?, ?it/s]
Building windows: 100%|██████████| 27/27 [00:00<00:00, 17417.13it/s]
Computing associations: 0%| | 0/27 [00:00<?, ?it/s]
Computing associations: 11%|█ | 3/27 [00:00<00:00, 24.64it/s]
Computing associations: 22%|██▏ | 6/27 [00:00<00:00, 25.20it/s]
Computing associations: 33%|███▎ | 9/27 [00:00<00:00, 25.35it/s]
Computing associations: 44%|████▍ | 12/27 [00:00<00:00, 25.67it/s]
Computing associations: 56%|█████▌ | 15/27 [00:00<00:00, 25.59it/s]
Computing associations: 67%|██████▋ | 18/27 [00:00<00:00, 25.30it/s]
Computing associations: 78%|███████▊ | 21/27 [00:00<00:00, 25.05it/s]
Computing associations: 89%|████████▉ | 24/27 [00:00<00:00, 25.22it/s]
Computing associations: 100%|██████████| 27/27 [00:01<00:00, 25.65it/s]
Computing associations: 100%|██████████| 27/27 [00:01<00:00, 25.42it/s]
0%| | 0/30 [00:00<?, ?it/s]
29 edges in frame 0 Total edges: 29: 0%| | 0/30 [00:00<?, ?it/s]
25 edges in frame 1 Total edges: 54: 0%| | 0/30 [00:00<?, ?it/s]
25 edges in frame 2 Total edges: 79: 0%| | 0/30 [00:00<?, ?it/s]
30 edges in frame 3 Total edges: 109: 0%| | 0/30 [00:00<?, ?it/s]
29 edges in frame 4 Total edges: 138: 0%| | 0/30 [00:00<?, ?it/s]
29 edges in frame 5 Total edges: 167: 0%| | 0/30 [00:00<?, ?it/s]
29 edges in frame 6 Total edges: 196: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 7 Total edges: 227: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 8 Total edges: 258: 0%| | 0/30 [00:00<?, ?it/s]
30 edges in frame 9 Total edges: 288: 0%| | 0/30 [00:00<?, ?it/s]
29 edges in frame 10 Total edges: 317: 0%| | 0/30 [00:00<?, ?it/s]
28 edges in frame 11 Total edges: 345: 0%| | 0/30 [00:00<?, ?it/s]
27 edges in frame 12 Total edges: 372: 0%| | 0/30 [00:00<?, ?it/s]
28 edges in frame 13 Total edges: 400: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 14 Total edges: 431: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 15 Total edges: 462: 0%| | 0/30 [00:00<?, ?it/s]
30 edges in frame 16 Total edges: 492: 0%| | 0/30 [00:00<?, ?it/s]
30 edges in frame 17 Total edges: 522: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 18 Total edges: 553: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 19 Total edges: 584: 0%| | 0/30 [00:00<?, ?it/s]
30 edges in frame 20 Total edges: 614: 0%| | 0/30 [00:00<?, ?it/s]
33 edges in frame 21 Total edges: 647: 0%| | 0/30 [00:00<?, ?it/s]
32 edges in frame 22 Total edges: 679: 0%| | 0/30 [00:00<?, ?it/s]
31 edges in frame 23 Total edges: 710: 0%| | 0/30 [00:00<?, ?it/s]
30 edges in frame 24 Total edges: 740: 0%| | 0/30 [00:00<?, ?it/s]
28 edges in frame 25 Total edges: 768: 0%| | 0/30 [00:00<?, ?it/s]
28 edges in frame 26 Total edges: 796: 0%| | 0/30 [00:00<?, ?it/s]
28 edges in frame 27 Total edges: 824: 0%| | 0/30 [00:00<?, ?it/s]
27 edges in frame 28 Total edges: 851: 0%| | 0/30 [00:00<?, ?it/s]
Greedily matched edges: 0%| | 0/851 [00:00<?, ?it/s]
Greedily matched edges: 99%|█████████▉| 845/851 [00:00<00:00, 189204.94it/s]
Converting graph to CTC results: 0%| | 0/53 [00:00<?, ?it/s]
Converting graph to CTC results: 100%|██████████| 53/53 [00:00<00:00, 1631.73it/s]
Computing centroids: 0%| | 0/30 [00:00<?, ?it/s]
Computing centroids: 67%|██████▋ | 20/30 [00:00<00:00, 196.41it/s]
Converting CTC to napari tracks: 0%| | 0/53 [00:00<?, ?it/s]
from pathlib import Path
import numpy as np
import pooch
import tifffile
from trackastra.model import Trackastra
from trackastra.tracking import ctc_to_napari_tracks, graph_to_ctc
import napari
# Create temporary directory
tmp_dir = Path(pooch.os_cache('napari-cell-tracking-example'))
tmp_dir.mkdir(parents=True, exist_ok=True)
# Extract silver truth data for trackastra
st_url = "doi:10.5281/zenodo.15852284/masks_pred.npz"
st_path = pooch.retrieve(
url=st_url,
fname="masks_pred.npz",
known_hash=None,
path=pooch.os_cache("napari cell tracking example")
)
# Extract raw tif files for trackastra
tif_url = "doi:10.5281/zenodo.17643282/01(1).zip"
tif_file = pooch.retrieve(
url=tif_url,
fname="01(1).zip",
known_hash=None,
path=pooch.os_cache("napari_cell_tracking_example"),
processor=pooch.Unzip(),
)
# Load the downloaded masks
masks_npz = np.load(st_path)
masks = masks_npz['masks']
# Sort through images and stack them
imgs = sorted(tif_file)
images = np.stack([
tifffile.imread(fn) for fn in imgs
])
# Initiate trackastra model
model = Trackastra.from_pretrained("general_2d", device='cpu')
# Generate tracks
graph, *_ = model.track(imgs=images, masks=masks, mode='greedy')
tracks_df, tracked_masks = graph_to_ctc(graph=graph, masks_original=masks)
napari_tracks, napari_graph = ctc_to_napari_tracks(segmentation=tracked_masks, man_track=tracks_df)
# Add Napari viewer
viewer = napari.Viewer()
viewer.add_image(images, name='Images')
viewer.add_labels(masks, name='Predicted Masks')
viewer.add_tracks(napari_tracks, graph=napari_graph, name="Tracks")
if __name__ == "__main__":
napari.run()
Total running time of the script: (0 minutes 17.423 seconds)