napari.Viewer#
- class napari.Viewer(*, title='napari', ndisplay=2, order=(), axis_labels=(), show=True)[source]#
Bases:
ViewerModel
Napari ndarray viewer.
- Parameters:
title (string, optional) – The title of the viewer window. By default ‘napari’.
ndisplay ({2, 3}, optional) – Number of displayed dimensions. By default 2.
order (tuple of int, optional) – Order in which dimensions are displayed where the last two or last three dimensions correspond to row x column or plane x row x column if ndisplay is 2 or 3. By default None
axis_labels (list of str, optional) – Dimension names. By default they are labeled with sequential numbers
show (bool, optional) – Whether to show the viewer after instantiation. By default True.
Methods
add_image
([data, channel_axis, rgb, ...])Add an image layer to the layer list.
add_labels
(data, *[, affine, blending, ...])Add a Labels layer to the layer list.
add_layer
(layer)Add a layer to the viewer.
add_points
([data, ndim, features, ...])Add a Points layer to the layer list.
add_shapes
([data, ndim, features, ...])Add a Shapes layer to the layer list.
add_surface
(data, *[, colormap, ...])Add a Surface layer to the layer list.
add_tracks
(data, *[, features, properties, ...])Add a Tracks layer to the layer list.
add_vectors
([data, ndim, features, ...])Add a Vectors layer to the layer list.
bind_key
(key[, func, overwrite])Bind a key combination to a keymap.
close
()Close the viewer window.
Class metod, Close all existing viewer instances.
construct
([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy
(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict
(**kwargs)Convert to a dictionary.
enums_as_values
([as_values])Temporarily override how enums are retrieved.
from_orm
(obj)json
(**kwargs)Serialize to json.
open
(path, *[, stack, plugin, layer_type])Open a path or list of paths with plugins, and add layers to viewer.
open_sample
(plugin, sample[, reader_plugin])Open sample from plugin and add it to the viewer.
parse_file
(path, *[, content_type, ...])parse_obj
(obj)parse_raw
(b, *[, content_type, encoding, ...])reset
()Reset the state of the model to default values.
Reset the camera view.
rounded_division
(min_val, max_val, precision)schema
([by_alias, ref_template])schema_json
(*[, by_alias, ref_template])screenshot
([path, size, scale, canvas_only, ...])Take currently displayed screen and convert to an image array.
show
(*[, block])Resize, show, and raise the viewer window.
update
(values[, recurse])Update a model in place.
update_console
(variables)Update console's namespace with desired variables.
update_forward_refs
(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate
(value)Attributes
axes
class_keymap
events
Experimental commands for IPython console.
scale_bar
text_overlay
window
Details
- add_image(data=None, *, channel_axis=None, rgb=None, colormap=None, contrast_limits=None, gamma=1, interpolation2d='nearest', interpolation3d='linear', rendering='mip', depiction='volume', iso_threshold=None, attenuation=0.05, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending=None, visible=True, multiscale=None, cache=True, plane=None, experimental_clipping_planes=None, custom_interpolation_kernel_2d=None) Image | List[Image] #
Add an image layer to the layer list.
- Parameters:
data (array or list of array) – Image data. Can be N >= 2 dimensional. If the last dimension has length 3 or 4 can be interpreted as RGB or RGBA if rgb is True. If a list and arrays are decreasing in shape then the data is treated as a multiscale image. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed.
channel_axis (int, optional) – Axis to expand image along. If provided, each channel in the data will be added as an individual image layer. In channel_axis mode, all other parameters MAY be provided as lists, and the Nth value will be applied to the Nth channel in the data. If a single value is provided, it will be broadcast to all Layers.
rgb (bool or list) – Whether the image is rgb RGB or RGBA. If not specified by user and the last dimension of the data has length 3 or 4 it will be set as True. If False the image is interpreted as a luminance image. If a list then must be same length as the axis that is being expanded as channels.
colormap (str, napari.utils.Colormap, tuple, dict, list) – Colormaps to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap. If a list then must be same length as the axis that is being expanded as channels, and each colormap is applied to each new image layer.
contrast_limits (list (2,)) – Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image. If list of lists then must be same length as the axis that is being expanded and then each colormap is applied to each image.
gamma (list, float) – Gamma correction for determining colormap linearity. Defaults to 1. If a list then must be same length as the axis that is being expanded as channels.
interpolation (str or list) – Deprecated, to be removed in 0.6.0
interpolation2d (str or list) – Interpolation mode used by vispy in 2D. Must be one of our supported modes. If a list then must be same length as the axis that is being expanded as channels.
interpolation3d (str or list) – Interpolation mode used by vispy in 3D. Must be one of our supported modes. If a list then must be same length as the axis that is being expanded as channels.
rendering (str or list) – Rendering mode used by vispy. Must be one of our supported modes. If a list then must be same length as the axis that is being expanded as channels.
depiction (str) –
Selects a preset volume depiction mode in vispy
volume: images are rendered as 3D volumes.
plane: images are rendered as 2D planes embedded in 3D.
iso_threshold (float or list) – Threshold for isosurface. If a list then must be same length as the axis that is being expanded as channels.
attenuation (float or list) – Attenuation rate for attenuated maximum intensity projection. If a list then must be same length as the axis that is being expanded as channels.
name (str or list of str) – Name of the layer. If a list then must be same length as the axis that is being expanded as channels.
metadata (dict or list of dict) – Layer metadata. If a list then must be a list of dicts with the same length as the axis that is being expanded as channels.
scale (tuple of float or list) – Scale factors for the layer. If a list then must be a list of tuples of float with the same length as the axis that is being expanded as channels.
translate (tuple of float or list) – Translation values for the layer. If a list then must be a list of tuples of float with the same length as the axis that is being expanded as channels.
rotate (float, 3-tuple of float, n-D array or list.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. If a list then must have same length as the axis that is being expanded as channels.
shear (1-D array or list.) – A vector of shear values for an upper triangular n-D shear matrix. If a list then must have same length as the axis that is being expanded as channels.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float or list) – Opacity of the layer visual, between 0.0 and 1.0. If a list then must be same length as the axis that is being expanded as channels.
blending (str or list) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}. If a list then must be same length as the axis that is being expanded as channels.
visible (bool or list of bool) – Whether the layer visual is currently being displayed. If a list then must be same length as the axis that is being expanded as channels.
multiscale (bool) – Whether the data is a multiscale image or not. Multiscale data is represented by a list of array like image data. If not specified by the user and if the data is a list of arrays that decrease in shape then it will be taken to be multiscale. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
plane (dict or SlicingPlane) – Properties defining plane rendering in 3D. Properties are defined in data coordinates. Valid dictionary keys are {‘position’, ‘normal’, ‘thickness’, and ‘enabled’}.
projection_mode (str) – How data outside the viewed dimensions but inside the thick Dims slice will be projected onto the viewed dimensions. Must fit to cls._projectionclass
experimental_clipping_planes (list of dicts, list of ClippingPlane, or ClippingPlaneList) – Each dict defines a clipping plane in 3D in data coordinates. Valid dictionary keys are {‘position’, ‘normal’, and ‘enabled’}. Values on the negative side of the normal are discarded if the plane is enabled.
custom_interpolation_kernel_2d (np.ndarray) – Convolution kernel used with the ‘custom’ interpolation mode in 2D rendering.
- Returns:
layer – The newly-created image layer or list of image layers.
- Return type:
napari.layers.Image
or list
- add_labels(data, *, affine=None, blending='translucent', cache=True, colormap=None, depiction='volume', experimental_clipping_planes=None, features=None, metadata=None, multiscale=None, name=None, opacity=0.7, plane=None, properties=None, rendering='iso_categorical', rotate=None, scale=None, shear=None, translate=None, visible=True) Labels #
Add a Labels layer to the layer list.
- Parameters:
data (array or list of array) – Labels data as an array or multiscale. Must be integer type or bools. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
colormap (CyclicLabelColormap or DirectLabelColormap or None) – Colormap to use for the labels. If None, a random colormap will be used.
depiction (str) – 3D Depiction mode. Must be one of {‘volume’, ‘plane’}. The default value is ‘volume’.
experimental_clipping_planes (list of dicts, list of ClippingPlane, or ClippingPlaneList) – Each dict defines a clipping plane in 3D in data coordinates. Valid dictionary keys are {‘position’, ‘normal’, and ‘enabled’}. Values on the negative side of the normal are discarded if the plane is enabled.
features (dict[str, array-like] or DataFrame) – Features table where each row corresponds to a label and each column is a feature. The first row corresponds to the background label.
metadata (dict) – Layer metadata.
multiscale (bool) – Whether the data is a multiscale image or not. Multiscale data is represented by a list of array like image data. If not specified by the user and if the data is a list of arrays that decrease in shape then it will be taken to be multiscale. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed.
name (str) – Name of the layer.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
plane (dict or SlicingPlane) – Properties defining plane rendering in 3D. Properties are defined in data coordinates. Valid dictionary keys are {‘position’, ‘normal’, ‘thickness’, and ‘enabled’}.
properties (dict {str: array (N,)} or DataFrame) – Properties for each label. Each property should be an array of length N, where N is the number of labels, and the first property corresponds to background.
rendering (str) – 3D Rendering mode used by vispy. Must be one {‘translucent’, ‘iso_categorical’}. ‘translucent’ renders without lighting. ‘iso_categorical’ uses isosurface rendering to calculate lighting effects on labeled surfaces. The default value is ‘iso_categorical’.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
translate (tuple of float) – Translation values for the layer.
visible (bool) – Whether the layer visual is currently being displayed.
- data#
Integer label data as an array or multiscale. Can be N dimensional. Every pixel contains an integer ID corresponding to the region it belongs to. The label 0 is rendered as transparent. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed.
- Type:
array or list of array
- multiscale#
Whether the data is a multiscale image or not. Multiscale data is represented by a list of array like image data. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed.
- Type:
- num_colors#
Number of unique colors to use in colormap. DEPRECATED: set
colormap
directly, using napari.utils.colormaps.label_colormap.- Type:
- features#
Features table where each row corresponds to a label and each column is a feature. The first row corresponds to the background label.
- Type:
Dataframe-like
- properties#
Properties for each label. Each property should be an array of length N, where N is the number of labels, and the first property corresponds to background.
- Type:
dict {str: array (N,)}, DataFrame
- color#
Custom label to color mapping. Values must be valid color names or RGBA arrays. While there is no limit to the number of custom labels, the the layer will render incorrectly if they map to more than 1024 distinct colors. DEPRECATED: set
colormap
directly, using napari.utils.colormaps.DirectLabelColormap.- Type:
dict of int to str or array
- seed#
Seed for colormap random generator. DEPRECATED: set
colormap
directly, using napari.utils.colormaps.label_colormap.- Type:
- contour#
If greater than 0, displays contours of labels instead of shaded regions with a thickness equal to its value. Must be >= 0.
- Type:
- mode#
Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas.
In PICK mode the cursor functions like a color picker, setting the clicked on label to be the current label. If the background is picked it will select the background label 0.
In PAINT mode the cursor functions like a paint brush changing any pixels it brushes over to the current label. If the background label 0 is selected than any pixels will be changed to background and this tool functions like an eraser. The size and shape of the cursor can be adjusted in the properties widget.
In FILL mode the cursor functions like a fill bucket replacing pixels of the label clicked on with the current label. It can either replace all pixels of that label or just those that are contiguous with the clicked on pixel. If the background label 0 is selected than any pixels will be changed to background and this tool functions like an eraser.
In ERASE mode the cursor functions similarly to PAINT mode, but to paint with background label, which effectively removes the label.
- Type:
- plane#
Properties defining plane rendering in 3D.
- Type:
SlicingPlane
- experimental_clipping_planes#
Clipping planes defined in data coordinates, used to clip the volume.
- Type:
ClippingPlaneList
Notes
- _selected_color4-tuple or None
RGBA tuple of the color of the selected label, or None if the background label 0 is selected.
- Returns:
layer – The newly-created labels layer.
- Return type:
- add_layer(layer: Layer) Layer #
Add a layer to the viewer.
- Parameters:
layer (
napari.layers.Layer
) – Layer to add.- Returns:
layer – The layer that was added (same as input).
- Return type:
napari.layers.Layer
or list
- add_points(data=None, *, ndim=None, features=None, feature_defaults=None, properties=None, text=None, symbol='o', size=10, edge_width=0.05, edge_width_is_relative=True, edge_color='dimgray', edge_color_cycle=None, edge_colormap='viridis', edge_contrast_limits=None, face_color='white', face_color_cycle=None, face_colormap='viridis', face_contrast_limits=None, out_of_slice_display=False, n_dimensional=None, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending='translucent', visible=True, cache=True, property_choices=None, experimental_clipping_planes=None, shading='none', canvas_size_limits=(2, 10000), antialiasing=1, shown=True) Points #
Add a Points layer to the layer list.
- Parameters:
data (array (N, D)) – Coordinates for N points in D dimensions.
ndim (int) – Number of dimensions for shapes. When data is not None, ndim must be D. An empty points layer can be instantiated with arbitrary ndim.
features (dict[str, array-like] or DataFrame) – Features table where each row corresponds to a point and each column is a feature.
feature_defaults (dict[str, Any] or DataFrame) – The default value of each feature in a table with one row.
properties (dict {str: array (N,)}, DataFrame) – Properties for each point. Each property should be an array of length N, where N is the number of points.
property_choices (dict {str: array (N,)}) – possible values for each property.
text (str, dict) – Text to be displayed with the points. If text is set to a key in properties, the value of that property will be displayed. Multiple properties can be composed using f-string-like syntax (e.g., ‘{property_1}, {float_property:.2f}). A dictionary can be provided with keyword arguments to set the text values and display properties. See TextManager.__init__() for the valid keyword arguments. For example usage, see /napari/examples/add_points_with_text.py.
symbol (str, array) – Symbols to be used for the point markers. Must be one of the following: arrow, clobber, cross, diamond, disc, hbar, ring, square, star, tailed_arrow, triangle_down, triangle_up, vbar, x.
size (float, array) – Size of the point marker in data pixels. If given as a scalar, all points are made the same size. If given as an array, size must be the same or broadcastable to the same shape as the data.
edge_width (float, array) – Width of the symbol edge in pixels.
edge_width_is_relative (bool) – If enabled, edge_width is interpreted as a fraction of the point size.
edge_color (str, array-like, dict) – Color of the point marker border. Numeric color values should be RGB(A).
edge_color_cycle (np.ndarray, list) – Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a categorical attribute is used color the vectors.
edge_colormap (str, napari.utils.Colormap) – Colormap to set edge_color if a continuous attribute is used to set face_color.
edge_contrast_limits (None, (float, float)) – clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
face_color (str, array-like, dict) – Color of the point marker body. Numeric color values should be RGB(A).
face_color_cycle (np.ndarray, list) – Cycle of colors (provided as string name, RGB, or RGBA) to map to face_color if a categorical attribute is used color the vectors.
face_colormap (str, napari.utils.Colormap) – Colormap to set face_color if a continuous attribute is used to set face_color.
face_contrast_limits (None, (float, float)) – clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
out_of_slice_display (bool) – If True, renders points not just in central plane but also slightly out of slice according to specified point marker size.
n_dimensional (bool) – This property will soon be deprecated in favor of ‘out_of_slice_display’. Use that instead.
name (str) – Name of the layer.
metadata (dict) – Layer metadata.
translate (tuple of float) – Translation values for the layer.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
visible (bool) – Whether the layer visual is currently being displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
shading (str, Shading) –
Render lighting and shading on points. Options are:
’none’ No shading is added to the points.
’spherical’ Shading and depth buffer are changed to give a 3D spherical look to the points
antialiasing (float) – Amount of antialiasing in canvas pixels.
canvas_size_limits (tuple of float) – Lower and upper limits for the size of points in canvas pixels.
shown (1-D array of bool) – Whether to show each point.
- data#
Coordinates for N points in D dimensions.
- Type:
array (N, D)
- features#
Features table where each row corresponds to a point and each column is a feature.
- Type:
DataFrame-like
- feature_defaults#
Stores the default value of each feature in a table with one row.
- Type:
DataFrame-like
- properties#
Annotations for each point. Each property should be an array of length N, where N is the number of points.
- Type:
dict {str: array (N,)} or DataFrame
- text#
Text to be displayed with the points. If text is set to a key in properties, the value of that property will be displayed. Multiple properties can be composed using f-string-like syntax (e.g., ‘{property_1}, {float_property:.2f}). For example usage, see /napari/examples/add_points_with_text.py.
- Type:
- size#
Array of sizes for each point. Must have the same shape as the layer data.
- Type:
array (N,)
- edge_width#
Width of the marker edges in pixels for all points
- Type:
array (N,)
- edge_width#
Width of the marker edges for all points as a fraction of their size.
- Type:
array (N,)
- edge_color#
Array of edge color RGBA values, one for each point.
- Type:
Nx4 numpy array
- edge_color_cycle#
Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a categorical attribute is used color the vectors.
- Type:
np.ndarray, list
- edge_colormap#
Colormap to set edge_color if a continuous attribute is used to set face_color.
- Type:
- edge_contrast_limits#
clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
- face_color#
Array of face color RGBA values, one for each point.
- Type:
Nx4 numpy array
- face_color_cycle#
Cycle of colors (provided as string name, RGB, or RGBA) to map to face_color if a categorical attribute is used color the vectors.
- Type:
np.ndarray, list
- face_colormap#
Colormap to set face_color if a continuous attribute is used to set face_color.
- Type:
- face_contrast_limits#
clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
- current_symbol#
Symbol for the next point to be added or the currently selected points.
- Type:
Symbol
- current_size#
Size of the marker for the next point to be added or the currently selected point.
- Type:
- current_edge_width#
Edge width of the marker for the next point to be added or the currently selected point.
- Type:
- current_edge_color#
Edge color of the marker edge for the next point to be added or the currently selected point.
- Type:
- current_face_color#
Face color of the marker edge for the next point to be added or the currently selected point.
- Type:
- out_of_slice_display#
If True, renders points not just in central plane but also slightly out of slice according to specified point marker size.
- Type:
- mode#
Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas.
In ADD mode clicks of the cursor add points at the clicked location.
In SELECT mode the cursor can select points by clicking on them or by dragging a box around them. Once selected points can be moved, have their properties edited, or be deleted.
- Type:
- face_color_mode#
Face color setting mode.
DIRECT (default mode) allows each point to be set arbitrarily
CYCLE allows the color to be set via a color cycle over an attribute
COLORMAP allows color to be set via a color map over an attribute
- Type:
- edge_color_mode#
Edge color setting mode.
DIRECT (default mode) allows each point to be set arbitrarily
CYCLE allows the color to be set via a color cycle over an attribute
COLORMAP allows color to be set via a color map over an attribute
- Type:
- shading#
Shading mode.
- Type:
Shading
- canvas_size_limits#
Lower and upper limits for the size of points in canvas pixels.
Notes
- _view_dataarray (M, 2)
2D coordinates of points in the currently viewed slice.
- _view_sizearray (M, )
Size of the point markers in the currently viewed slice.
- _view_symbolarray (M, )
Symbols of the point markers in the currently viewed slice.
- _view_edge_widtharray (M, )
Edge width of the point markers in the currently viewed slice.
- _indices_viewarray (M, )
Integer indices of the points in the currently viewed slice and are shown.
- _selected_view :
Integer indices of selected points in the currently viewed slice within the _view_data array.
- _selected_boxarray (4, 2) or None
Four corners of any box either around currently selected points or being created during a drag action. Starting in the top left and going clockwise.
- _drag_startlist or None
Coordinates of first cursor click during a drag action. Gets reset to None after dragging is done.
- Returns:
layer – The newly-created points layer.
- Return type:
- add_shapes(data=None, *, ndim=None, features=None, feature_defaults=None, properties=None, property_choices=None, text=None, shape_type='rectangle', edge_width=1, edge_color='#777777', edge_color_cycle=None, edge_colormap='viridis', edge_contrast_limits=None, face_color='white', face_color_cycle=None, face_colormap='viridis', face_contrast_limits=None, z_index=0, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=0.7, blending='translucent', visible=True, cache=True, experimental_clipping_planes=None) Shapes #
Add a Shapes layer to the layer list.
- Parameters:
data (list or array) – List of shape data, where each element is an (N, D) array of the N vertices of a shape in D dimensions. Can be an 3-dimensional array if each shape has the same number of vertices.
ndim (int) – Number of dimensions for shapes. When data is not None, ndim must be D. An empty shapes layer can be instantiated with arbitrary ndim.
features (dict[str, array-like] or Dataframe-like) – Features table where each row corresponds to a shape and each column is a feature.
feature_defaults (dict[str, Any] or Dataframe-like) – The default value of each feature in a table with one row.
properties (dict {str: array (N,)}, DataFrame) – Properties for each shape. Each property should be an array of length N, where N is the number of shapes.
property_choices (dict {str: array (N,)}) – possible values for each property.
text (str, dict) – Text to be displayed with the shapes. If text is set to a key in properties, the value of that property will be displayed. Multiple properties can be composed using f-string-like syntax (e.g., ‘{property_1}, {float_property:.2f}). A dictionary can be provided with keyword arguments to set the text values and display properties. See TextManager.__init__() for the valid keyword arguments. For example usage, see /napari/examples/add_shapes_with_text.py.
shape_type (string or list) – String of shape shape_type, must be one of “{‘line’, ‘rectangle’, ‘ellipse’, ‘path’, ‘polygon’}”. If a list is supplied it must be the same length as the length of data and each element will be applied to each shape otherwise the same value will be used for all shapes.
edge_width (float or list) – Thickness of lines and edges. If a list is supplied it must be the same length as the length of data and each element will be applied to each shape otherwise the same value will be used for all shapes.
edge_color (str, array-like) – If string can be any color name recognized by vispy or hex value if starting with #. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of data and each element will be applied to each shape otherwise the same value will be used for all shapes.
edge_color_cycle (np.ndarray, list) – Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a categorical attribute is used color the vectors.
edge_colormap (str, napari.utils.Colormap) – Colormap to set edge_color if a continuous attribute is used to set face_color.
edge_contrast_limits (None, (float, float)) – clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
face_color (str, array-like) – If string can be any color name recognized by vispy or hex value if starting with #. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of data and each element will be applied to each shape otherwise the same value will be used for all shapes.
face_color_cycle (np.ndarray, list) – Cycle of colors (provided as string name, RGB, or RGBA) to map to face_color if a categorical attribute is used color the vectors.
face_colormap (str, napari.utils.Colormap) – Colormap to set face_color if a continuous attribute is used to set face_color.
face_contrast_limits (None, (float, float)) – clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
z_index (int or list) – Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of data and each element will be applied to each shape otherwise the same value will be used for all shapes.
name (str) – Name of the layer.
metadata (dict) – Layer metadata.
translate (tuple of float) – Translation values for the layer.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
visible (bool) – Whether the layer visual is currently being displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
- data#
List of shape data, where each element is an (N, D) array of the N vertices of a shape in D dimensions.
- Type:
(N, ) list of array
- features#
Features table where each row corresponds to a shape and each column is a feature.
- Type:
Dataframe-like
- feature_defaults#
Stores the default value of each feature in a table with one row.
- Type:
DataFrame-like
- properties#
Properties for each shape. Each property should be an array of length N, where N is the number of shapes.
- Type:
dict {str: array (N,)}, DataFrame
- text#
Text to be displayed with the shapes. If text is set to a key in properties, the value of that property will be displayed. Multiple properties can be composed using f-string-like syntax (e.g., ‘{property_1}, {float_property:.2f}). For example usage, see /napari/examples/add_shapes_with_text.py.
- current_edge_width#
Thickness of lines and edges of the next shape to be added or the currently selected shape.
- Type:
- current_edge_color#
Color of the edge of the next shape to be added or the currently selected shape.
- Type:
- current_face_color#
Color of the face of the next shape to be added or the currently selected shape.
- Type:
- mode#
Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas.
The SELECT mode allows for entire shapes to be selected, moved and resized.
The DIRECT mode allows for shapes to be selected and their individual vertices to be moved.
The VERTEX_INSERT and VERTEX_REMOVE modes allow for individual vertices either to be added to or removed from shapes that are already selected. Note that shapes cannot be selected in this mode.
The ADD_RECTANGLE, ADD_ELLIPSE, ADD_LINE, ADD_PATH, and ADD_POLYGON modes all allow for their corresponding shape type to be added.
- Type:
Mode
Notes
- _data_dictDict of ShapeList
Dictionary containing all the shape data indexed by slice tuple
- _data_viewShapeList
Object containing the currently viewed shape data.
- _selected_data_historyset
Set of currently selected captured on press of <space>.
- _selected_data_storedset
Set of selected previously displayed. Used to prevent rerendering the same highlighted shapes when no data has changed.
- _selected_boxNone | np.ndarray
None if no shapes are selected, otherwise a 10x2 array of vertices of the interaction box. The first 8 points are the corners and midpoints of the box. The 9th point is the center of the box, and the last point is the location of the rotation handle that can be used to rotate the box.
- _drag_startNone | np.ndarray
If a drag has been started and is in progress then a length 2 array of the initial coordinates of the drag. None otherwise.
- _drag_boxNone | np.ndarray
If a drag box is being created to select shapes then this is a 2x2 array of the two extreme corners of the drag. None otherwise.
- _drag_box_storedNone | np.ndarray
If a drag box is being created to select shapes then this is a 2x2 array of the two extreme corners of the drag that have previously been rendered. None otherwise. Used to prevent rerendering the same drag box when no data has changed.
- _is_movingbool
Bool indicating if any shapes are currently being moved.
- _is_selectingbool
Bool indicating if a drag box is currently being created in order to select shapes.
- _is_creatingbool
Bool indicating if any shapes are currently being created.
- _fixed_aspectbool
Bool indicating if aspect ratio of shapes should be preserved on resizing.
- _aspect_ratiofloat
Value of aspect ratio to be preserved if _fixed_aspect is True.
- _fixed_vertexNone | np.ndarray
If a scaling or rotation is in progress then a length 2 array of the coordinates that are remaining fixed during the move. None otherwise.
- _fixed_indexint
If a scaling or rotation is in progress then the index of the vertex of the bounding box that is remaining fixed during the move. None otherwise.
- _update_propertiesbool
Bool indicating if properties are to allowed to update the selected shapes when they are changed. Blocking this prevents circular loops when shapes are selected and the properties are changed based on that selection
- _allow_thumbnail_updatebool
Flag set to true to allow the thumbnail to be updated. Blocking the thumbnail can be advantageous where responsiveness is critical.
- _clipboarddict
Dict of shape objects that are to be used during a copy and paste.
- _colorslist
List of supported vispy color names.
- _vertex_sizefloat
Size of the vertices of the shapes and bounding box in Canvas coordinates.
- _rotation_handle_lengthfloat
Length of the rotation handle of the bounding box in Canvas coordinates.
- _input_ndimint
Dimensions of shape data.
- _thumbnail_update_threshint
If there are more than this number of shapes, the thumbnail won’t update during interactive events
- Returns:
layer – The newly-created shapes layer.
- Return type:
- add_surface(data, *, colormap='gray', contrast_limits=None, gamma=1, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending='translucent', shading='flat', visible=True, cache=True, experimental_clipping_planes=None, wireframe=None, normals=None, texture=None, texcoords=None, vertex_colors=None) Surface #
Add a Surface layer to the layer list.
- Parameters:
data (2-tuple or 3-tuple of array) –
The first element of the tuple is an (N, D) array of vertices of mesh triangles.
The second is an (M, 3) array of int of indices of the mesh triangles.
The optional third element is the (K0, …, KL, N) array of values (vertex_values) used to color vertices where the additional L dimensions are used to color the same mesh with different values. If not provided, it defaults to ones.
colormap (str, napari.utils.Colormap, tuple, dict) – Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap.
texture ((I, J) or (I, J, C) array) – A 2D texture to be mapped onto the mesh using texcoords. C may be 3 (RGB) or 4 (RGBA) channels for a color texture.
texcoords ((N, 2) array) – 2D coordinates for each vertex, mapping into the texture. The number of texture coords must match the number of vertices (N). Coordinates should be in [0.0, 1.0] and are scaled to sample the 2D texture. Coordinates outside this range will wrap, but this behavior should be considered an implementation detail: there are no plans to change it, but it’s a feature of the underlying vispy visual.
vertex_colors ((N, C) or (K0, ..., KL, N, C) array of color values) – Take care that the (optional) L additional dimensions match those of vertex_values for proper slicing. C may be 3 (RGB) or 4 (RGBA) channels.
contrast_limits (list (2,)) – Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image.
gamma (float) – Gamma correction for determining colormap linearity. Defaults to 1.
name (str) – Name of the layer.
metadata (dict) – Layer metadata.
translate (tuple of float) – Translation values for the layer.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
shading (str, Shading) –
One of a list of preset shading modes that determine the lighting model using when rendering the surface in 3D.
Shading.NONE
Corresponds toshading='none'
.Shading.FLAT
Corresponds toshading='flat'
.Shading.SMOOTH
Corresponds toshading='smooth'
.
visible (bool) – Whether the layer visual is currently being displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
wireframe (None, dict or SurfaceWireframe) – Whether and how to display the edges of the surface mesh with a wireframe.
normals (None, dict or SurfaceNormals) – Whether and how to display the face and vertex normals of the surface mesh.
- data#
The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The third element is the (K0, …, KL, N) array of values used to color vertices where the additional L dimensions are used to color the same mesh with different values.
- Type:
3-tuple of array
- vertices#
Vertices of mesh triangles.
- Type:
(N, D) array
- vertex_values#
Values used to color vertices.
- Type:
(K0, …, KL, N) array
- colormap#
Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap.
- Type:
- contrast_limits#
Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image.
- Type:
list (2,)
- shading#
One of a list of preset shading modes that determine the lighting model using when rendering the surface.
'none'
'flat'
'smooth'
- Type:
- wireframe#
Whether and how to display the edges of the surface mesh with a wireframe.
- Type:
SurfaceWireframe
- normals#
Whether and how to display the face and vertex normals of the surface mesh.
- Type:
SurfaceNormals
Notes
- _data_view(M, 2) or (M, 3) array
The coordinates of the vertices given the viewed dimensions.
- _view_faces(P, 3) array
The integer indices of the vertices that form the triangles in the currently viewed slice.
- _colorbararray
Colorbar for current colormap.
- Returns:
layer – The newly-created surface layer.
- Return type:
- add_tracks(data, *, features=None, properties=None, graph=None, tail_width=2, tail_length=30, head_length=0, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending='additive', visible=True, colormap='turbo', color_by='track_id', colormaps_dict=None, cache=True, experimental_clipping_planes=None) Tracks #
Add a Tracks layer to the layer list.
- Parameters:
data (array (N, D+1)) – Coordinates for N points in D+1 dimensions. ID,T,(Z),Y,X. The first axis is the integer ID of the track. D is either 3 or 4 for planar or volumetric timeseries respectively.
features (Dataframe-like) – Features table where each row corresponds to a point and each column is a feature.
properties (dict {str: array (N,)}, DataFrame) – Properties for each point. Each property should be an array of length N, where N is the number of points.
graph (dict {int: list}) – Graph representing associations between tracks. Dictionary defines the mapping between a track ID and the parents of the track. This can be one (the track has one parent, and the parent has >=1 child) in the case of track splitting, or more than one (the track has multiple parents, but only one child) in the case of track merging. See examples/tracks_3d_with_graph.py
color_by (str) – Track property (from property keys) by which to color vertices.
tail_width (float) – Width of the track tails in pixels.
tail_length (float) – Length of the positive (backward in time) tails in units of time.
head_length (float) – Length of the positive (forward in time) tails in units of time.
colormap (str) – Default colormap to use to set vertex colors. Specialized colormaps, relating to specified properties can be passed to the layer via colormaps_dict.
colormaps_dict (dict {str: napari.utils.Colormap}) – Optional dictionary mapping each property to a colormap for that property. This allows each property to be assigned a specific colormap, rather than having a global colormap for everything.
name (str) – Name of the layer.
metadata (dict) – Layer metadata.
translate (tuple of float) – Translation values for the layer.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
visible (bool) – Whether the layer visual is currently being displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
- Returns:
layer – The newly-created tracks layer.
- Return type:
- add_vectors(data=None, *, ndim=None, features=None, feature_defaults=None, properties=None, property_choices=None, edge_width=1, vector_style='triangle', edge_color='red', edge_color_cycle=None, edge_colormap='viridis', edge_contrast_limits=None, out_of_slice_display=False, length=1, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=0.7, blending='translucent', visible=True, cache=True, experimental_clipping_planes=None) Vectors #
Add a Vectors layer to the layer list.
- Parameters:
data ((N, 2, D) or (N1, N2, ..., ND, D) array) – An (N, 2, D) array is interpreted as “coordinate-like” data and a list of N vectors with start point and projections of the vector in D dimensions. An (N1, N2, …, ND, D) array is interpreted as “image-like” data where there is a length D vector of the projections at each pixel.
ndim (int) – Number of dimensions for vectors. When data is not None, ndim must be D. An empty vectors layer can be instantiated with arbitrary ndim.
features (dict[str, array-like] or DataFrame) – Features table where each row corresponds to a vector and each column is a feature.
properties (dict {str: array (N,)}, DataFrame) – Properties for each vector. Each property should be an array of length N, where N is the number of vectors.
property_choices (dict {str: array (N,)}) – possible values for each property.
edge_width (float) – Width for all vectors in pixels.
vector_style (str) – One of a list of preset display modes that determines how vectors are displayed. Allowed values are {‘line’, ‘triangle’, and ‘arrow’}.
length (float) – Multiplicative factor on projections for length of all vectors.
edge_color (str) – Color of all of the vectors.
edge_color_cycle (np.ndarray, list) – Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a categorical attribute is used color the vectors.
edge_colormap (str, napari.utils.Colormap) – Colormap to set vector color if a continuous attribute is used to set edge_color.
edge_contrast_limits (None, (float, float)) – clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
out_of_slice_display (bool) – If True, renders vectors not just in central plane but also slightly out of slice according to specified point marker size.
name (str) – Name of the layer.
metadata (dict) – Layer metadata.
translate (tuple of float) – Translation values for the layer.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
visible (bool) – Whether the layer visual is currently being displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
- data#
The start point and projections of N vectors in D dimensions.
- Type:
(N, 2, D) array
- features#
Features table where each row corresponds to a vector and each column is a feature.
- Type:
Dataframe-like
- feature_defaults#
Stores the default value of each feature in a table with one row.
- Type:
DataFrame-like
- properties#
Properties for each vector. Each property should be an array of length N, where N is the number of vectors.
- Type:
dict {str: array (N,)}, DataFrame
- vector_style#
Determines how vectors are displayed.
VectorStyle.LINE
:
Vectors are displayed as lines. *
VectorStyle.TRIANGLE
: Vectors are displayed as triangles. *VectorStyle.ARROW
: Vectors are displayed as arrows.- Type:
VectorStyle
- edge_color_cycle#
Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a categorical attribute is used color the vectors.
- Type:
np.ndarray, list
- edge_colormap#
Colormap to set vector color if a continuous attribute is used to set edge_color.
- Type:
- edge_contrast_limits#
clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max())
- out_of_slice_display#
If True, renders vectors not just in central plane but also slightly out of slice according to specified point marker size.
- Type:
Notes
- _view_data(M, 2, 2) array
The start point and projections of N vectors in 2D for vectors whose start point is in the currently viewed slice.
- _view_face_color(M, 4) np.ndarray
colors for the M in view vectors
- _view_indices(1, M) array
indices for the M in view vectors
- _view_alphas(M,) or float
relative opacity for the M in view vectors
- _property_choicesdict {str: array (N,)}
Possible values for the properties in Vectors.properties.
- _max_vectors_thumbnailint
The maximum number of vectors that will ever be used to render the thumbnail. If more vectors are present then they are randomly subsampled.
- Returns:
layer – The newly-created vectors layer.
- Return type:
- bind_key(key, func=<object object>, *, overwrite=False)#
Bind a key combination to a keymap.
- Parameters:
keymap (dict of str: callable) – Keymap to modify.
key (str or ...) – Key combination.
...
acts as a wildcard if no key combinations can be matched in the keymap (this will overwrite all key combinations further down the lookup chain).func (callable, None, or ...) – Callable to bind to the key combination. If
None
is passed, unbind instead....
acts as a blocker, effectively unbinding the key combination for all keymaps further down the lookup chain.overwrite (bool, keyword-only, optional) – Whether to overwrite the key combination if it already exists.
- Returns:
unbound – Callable unbound by this operation, if any.
- Return type:
callable or None
Notes
Key combinations are represented in the form
[modifier-]key
, e.g.a
,Control-c
, orControl-Alt-Delete
. Valid modifiers are Control, Alt, Shift, and Meta.Letters will always be read as upper-case. Due to the native implementation of the key system, Shift pressed in certain key combinations may yield inconsistent or unexpected results. Therefore, it is not recommended to use Shift with non-letter keys. On OSX, Control is swapped with Meta such that pressing Command reads as Control.
Special keys include Shift, Control, Alt, Meta, Up, Down, Left, Right, PageUp, PageDown, Insert, Delete, Home, End, Escape, Backspace, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Space, Enter, and Tab
Functions take in only one argument: the parent that the function was bound to.
By default, all functions are assumed to work on key presses only, but can be denoted to work on release too by separating the function into two statements with the yield keyword:
@viewer.bind_key('h') def hello_world(viewer): # on key press viewer.status = 'hello world!' yield # on key release viewer.status = 'goodbye world :('
To create a keymap that will block others,
bind_key(..., ...)`
.
- classmethod close_all() int [source]#
Class metod, Close all existing viewer instances.
This is mostly exposed to avoid leaking of viewers when running tests. As having many non-closed viewer can adversely affect performances.
It will return the number of viewer closed.
- Returns:
number of viewer closed.
- Return type:
- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model #
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model #
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns:
new model instance
- dict(**kwargs)#
Convert to a dictionary.
- enums_as_values(as_values: bool = True)#
Temporarily override how enums are retrieved.
- Parameters:
as_values (bool, optional) – Whether enums should be shown as values (or as enum objects), by default True
- property experimental#
Experimental commands for IPython console.
For example run “viewer.experimental.cmds.loader.help”.
- json(**kwargs)#
Serialize to json.
- open(path: str | Path | Sequence[str | Path], *, stack: bool | List[List[str]] = False, plugin: str | None = 'napari', layer_type: str | None = None, **kwargs) List[Layer] #
Open a path or list of paths with plugins, and add layers to viewer.
A list of paths will be handed one-by-one to the napari_get_reader hook if stack is False, otherwise the full list is passed to each plugin hook.
- Parameters:
path (str or list of str) – A filepath, directory, or URL (or a list of any) to open.
stack (bool or list[list[str]], optional) – If a list of strings is passed as
path
andstack
isTrue
, then the entire list will be passed to plugins. It is then up to individual plugins to know how to handle a list of paths. Ifstack
isFalse
, then thepath
list is broken up and passed to plugin readers one by one. by default False. If the stack option is a list of lists containing individual paths, the inner lists are passedto the reader and will be stacked.plugin (str, optional) – Name of a plugin to use, by default builtins. If provided, will force
path
to be read with the specifiedplugin
. If None,plugin
will be read from preferences or inferred if just one reader is compatible. If the requested plugin cannot readpath
, an exception will be raised.layer_type (str, optional) – If provided, will force data read from
path
to be passed to the correspondingadd_<layer_type>
method (along with any additional)kwargs
provided to this function. This may result in exceptions if the data returned from the path is not compatible with the layer_type.**kwargs – All other keyword arguments will be passed on to the respective
add_layer
method.
- Returns:
layers – A list of any layers that were added to the viewer.
- Return type:
- open_sample(plugin: str, sample: str, reader_plugin: str | None = None, **kwargs) List[Layer] #
Open sample from plugin and add it to the viewer.
To see all available samples registered by plugins, use
napari.plugins.available_samples()
- Parameters:
plugin (str) – name of a plugin providing a sample
sample (str) – name of the sample
reader_plugin (str, optional) – reader plugin to pass to viewer.open (only used if the sample data is a string). by default None.
**kwargs – additional kwargs will be passed to the sample data loader provided by plugin. Use of
**kwargs
may raise an error if the kwargs do not match the sample data loader.
- Returns:
layers – A list of any layers that were added to the viewer.
- Return type:
- Raises:
KeyError – If plugin does not provide a sample named sample.
- reset()#
Reset the state of the model to default values.
- reset_view()#
Reset the camera view.
- screenshot(path=None, *, size=None, scale=None, canvas_only=True, flash: bool = True)[source]#
Take currently displayed screen and convert to an image array.
- Parameters:
path (str) – Filename for saving screenshot image.
size (tuple (int, int)) – Size (resolution) of the screenshot. By default, the currently displayed size. Only used if canvas_only is True.
scale (float) – Scale factor used to increase resolution of canvas for the screenshot. By default, the currently displayed resolution. Only used if canvas_only is True.
canvas_only (bool) – If True, screenshot shows only the image display canvas, and if False include the napari viewer frame in the screenshot, By default, True.
flash (bool) – Flag to indicate whether flash animation should be shown after the screenshot was captured. By default, True.
- Returns:
image – Numpy array of type ubyte and shape (h, w, 4). Index [0, 0] is the upper-left corner of the rendered region.
- Return type:
array
- update(values: EventedModel | dict, recurse: bool = True) None #
Update a model in place.
- Parameters:
values (dict, napari.utils.events.EventedModel) – Values to update the model with. If an EventedModel is passed it is first converted to a dictionary. The keys of this dictionary must be found as attributes on the current model.
recurse (bool) – If True, recursively update fields that are EventedModels. Otherwise, just update the immediate fields of this EventedModel, which is useful when the declared field type (e.g.
Union
) can have different realized types with different fields.
- update_console(variables)[source]#
Update console’s namespace with desired variables.
- Parameters:
variables (dict, str or list/tuple of str) – The variables to inject into the console’s namespace. If a dict, a simple update is done. If a str, the string is assumed to have variable names separated by spaces. A list/tuple of str can also be used to give the variable names. If just the variable names are give (list/tuple/str) then the variable values looked up in the callers frame.