Source code for napari.layers.shapes.shapes

import warnings
from contextlib import contextmanager
from copy import copy, deepcopy
from itertools import cycle
from typing import (
    Any,
    Callable,
    ClassVar,
    Optional,
    Union,
)

import numpy as np
import numpy.typing as npt
import pandas as pd
from vispy.color import get_color_names

from napari.layers.base import Layer, no_op
from napari.layers.base._base_constants import ActionType
from napari.layers.base._base_mouse_bindings import (
    highlight_box_handles,
    transform_with_box,
)
from napari.layers.shapes._shape_list import ShapeList
from napari.layers.shapes._shapes_constants import (
    Box,
    ColorMode,
    Mode,
    ShapeType,
    shape_classes,
)
from napari.layers.shapes._shapes_mouse_bindings import (
    add_ellipse,
    add_line,
    add_path_polygon,
    add_path_polygon_lasso,
    add_rectangle,
    finish_drawing_shape,
    highlight,
    polygon_creating,
    select,
    vertex_insert,
    vertex_remove,
)
from napari.layers.shapes._shapes_utils import (
    create_box,
    extract_shape_type,
    get_default_shape_type,
    get_shape_ndim,
    number_of_shapes,
    rdp,
    validate_num_vertices,
)
from napari.layers.utils.color_manager_utils import (
    guess_continuous,
    map_property,
)
from napari.layers.utils.color_transformations import (
    normalize_and_broadcast_colors,
    transform_color_cycle,
    transform_color_with_defaults,
)
from napari.layers.utils.interactivity_utils import (
    nd_line_segment_to_displayed_data_ray,
)
from napari.layers.utils.layer_utils import _FeatureTable, _unique_element
from napari.layers.utils.text_manager import TextManager
from napari.settings import get_settings
from napari.utils.colormaps import Colormap, ValidColormapArg, ensure_colormap
from napari.utils.colormaps.colormap_utils import ColorType
from napari.utils.colormaps.standardize_color import (
    hex_to_name,
    rgb_to_hex,
    transform_color,
)
from napari.utils.events import Event
from napari.utils.events.custom_types import Array
from napari.utils.misc import ensure_iterable
from napari.utils.translations import trans

DEFAULT_COLOR_CYCLE = np.array([[1, 0, 1, 1], [0, 1, 0, 1]])


[docs] class Shapes(Layer): """Shapes layer. Parameters ---------- data : list or array List of shape data, where each element is an (N, D) array of the N vertices of a shape in D dimensions. Can be an 3-dimensional array if each shape has the same number of vertices. ndim : int Number of dimensions for shapes. When data is not None, ndim must be D. An empty shapes layer can be instantiated with arbitrary ndim. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari `Affine` transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values. axis_labels : tuple of str, optional Dimension names of the layer data. If not provided, axis_labels will be set to (..., 'axis -2', 'axis -1'). blending : str One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {'opaque', 'translucent', and 'additive'}. cache : bool Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays. edge_color : str, array-like If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color_cycle : np.ndarray, list Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a categorical attribute is used color the vectors. edge_colormap : str, napari.utils.Colormap Colormap to set edge_color if a continuous attribute is used to set face_color. edge_contrast_limits : None, (float, float) clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max()) edge_width : float or list Thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. experimental_clipping_planes : list of dicts, list of ClippingPlane, or ClippingPlaneList Each dict defines a clipping plane in 3D in data coordinates. Valid dictionary keys are {'position', 'normal', and 'enabled'}. Values on the negative side of the normal are discarded if the plane is enabled. face_color : str, array-like If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color_cycle : np.ndarray, list Cycle of colors (provided as string name, RGB, or RGBA) to map to face_color if a categorical attribute is used color the vectors. face_colormap : str, napari.utils.Colormap Colormap to set face_color if a continuous attribute is used to set face_color. face_contrast_limits : None, (float, float) clims for mapping the property to a color map. These are the min and max value of the specified property that are mapped to 0 and 1, respectively. The default value is None. If set the none, the clims will be set to (property.min(), property.max()) feature_defaults : dict[str, Any] or Dataframe-like The default value of each feature in a table with one row. features : dict[str, array-like] or Dataframe-like Features table where each row corresponds to a shape and each column is a feature. metadata : dict Layer metadata. name : str Name of the layer. opacity : float Opacity of the layer visual, between 0.0 and 1.0. projection_mode : str How data outside the viewed dimensions but inside the thick Dims slice will be projected onto the viewed dimenions. properties : dict {str: array (N,)}, DataFrame Properties for each shape. Each property should be an array of length N, where N is the number of shapes. property_choices : dict {str: array (N,)} possible values for each property. rotate : float, 3-tuple of float, or n-D array. If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. scale : tuple of float Scale factors for the layer. shape_type : string or list String of shape shape_type, must be one of "{'line', 'rectangle', 'ellipse', 'path', 'polygon'}". If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. text : str, dict Text to be displayed with the shapes. If text is set to a key in properties, the value of that property will be displayed. Multiple properties can be composed using f-string-like syntax (e.g., '{property_1}, {float_property:.2f}). A dictionary can be provided with keyword arguments to set the text values and display properties. See TextManager.__init__() for the valid keyword arguments. For example usage, see /napari/examples/add_shapes_with_text.py. translate : tuple of float Translation values for the layer. units : tuple of str or pint.Unit, optional Units of the layer data in world coordinates. If not provided, the default units are assumed to be pixels. visible : bool Whether the layer visual is currently being displayed. z_index : int or list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. Attributes ---------- data : (N, ) list of array List of shape data, where each element is an (N, D) array of the N vertices of a shape in D dimensions. axis_labels : tuple of str Dimension names of the layer data. features : Dataframe-like Features table where each row corresponds to a shape and each column is a feature. feature_defaults : DataFrame-like Stores the default value of each feature in a table with one row. properties : dict {str: array (N,)}, DataFrame Properties for each shape. Each property should be an array of length N, where N is the number of shapes. text : str, dict Text to be displayed with the shapes. If text is set to a key in properties, the value of that property will be displayed. Multiple properties can be composed using f-string-like syntax (e.g., '{property_1}, {float_property:.2f}). For example usage, see /napari/examples/add_shapes_with_text.py. shape_type : (N, ) list of str Name of shape type for each shape. edge_color : str, array-like Color of the shape border. Numeric color values should be RGB(A). face_color : str, array-like Color of the shape face. Numeric color values should be RGB(A). edge_width : (N, ) list of float Edge width for each shape. z_index : (N, ) list of int z-index for each shape. current_edge_width : float Thickness of lines and edges of the next shape to be added or the currently selected shape. current_edge_color : str Color of the edge of the next shape to be added or the currently selected shape. current_face_color : str Color of the face of the next shape to be added or the currently selected shape. selected_data : set List of currently selected shapes. nshapes : int Total number of shapes. mode : Mode Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas. The SELECT mode allows for entire shapes to be selected, moved and resized. The DIRECT mode allows for shapes to be selected and their individual vertices to be moved. The VERTEX_INSERT and VERTEX_REMOVE modes allow for individual vertices either to be added to or removed from shapes that are already selected. Note that shapes cannot be selected in this mode. The ADD_RECTANGLE, ADD_ELLIPSE, ADD_LINE, ADD_PATH, and ADD_POLYGON modes all allow for their corresponding shape type to be added. units: tuple of pint.Unit Units of the layer data in world coordinates. Notes ----- _data_dict : Dict of ShapeList Dictionary containing all the shape data indexed by slice tuple _data_view : ShapeList Object containing the currently viewed shape data. _selected_data_history : set Set of currently selected captured on press of <space>. _selected_data_stored : set Set of selected previously displayed. Used to prevent rerendering the same highlighted shapes when no data has changed. _selected_box : None | np.ndarray `None` if no shapes are selected, otherwise a 10x2 array of vertices of the interaction box. The first 8 points are the corners and midpoints of the box. The 9th point is the center of the box, and the last point is the location of the rotation handle that can be used to rotate the box. _drag_start : None | np.ndarray If a drag has been started and is in progress then a length 2 array of the initial coordinates of the drag. `None` otherwise. _drag_box : None | np.ndarray If a drag box is being created to select shapes then this is a 2x2 array of the two extreme corners of the drag. `None` otherwise. _drag_box_stored : None | np.ndarray If a drag box is being created to select shapes then this is a 2x2 array of the two extreme corners of the drag that have previously been rendered. `None` otherwise. Used to prevent rerendering the same drag box when no data has changed. _is_moving : bool Bool indicating if any shapes are currently being moved. _is_selecting : bool Bool indicating if a drag box is currently being created in order to select shapes. _is_creating : bool Bool indicating if any shapes are currently being created. _fixed_aspect : bool Bool indicating if aspect ratio of shapes should be preserved on resizing. _aspect_ratio : float Value of aspect ratio to be preserved if `_fixed_aspect` is `True`. _fixed_vertex : None | np.ndarray If a scaling or rotation is in progress then a length 2 array of the coordinates that are remaining fixed during the move. `None` otherwise. _fixed_index : int If a scaling or rotation is in progress then the index of the vertex of the bounding box that is remaining fixed during the move. `None` otherwise. _update_properties : bool Bool indicating if properties are to allowed to update the selected shapes when they are changed. Blocking this prevents circular loops when shapes are selected and the properties are changed based on that selection _allow_thumbnail_update : bool Flag set to true to allow the thumbnail to be updated. Blocking the thumbnail can be advantageous where responsiveness is critical. _clipboard : dict Dict of shape objects that are to be used during a copy and paste. _colors : list List of supported vispy color names. _vertex_size : float Size of the vertices of the shapes and bounding box in Canvas coordinates. _rotation_handle_length : float Length of the rotation handle of the bounding box in Canvas coordinates. _input_ndim : int Dimensions of shape data. _thumbnail_update_thresh : int If there are more than this number of shapes, the thumbnail won't update during interactive events """ _modeclass = Mode _colors = get_color_names() _vertex_size = 10 _rotation_handle_length = 20 _highlight_color = (0, 0.6, 1) _highlight_width = 1.5 _face_color_property: str _edge_color_property: str _face_color_cycle: npt.NDArray _edge_color_cycle: npt.NDArray _face_color_cycle_values: npt.NDArray _edge_color_cycle_values: npt.NDArray _face_color_mode: str _edge_color_mode: str # If more shapes are present then they are randomly subsampled # in the thumbnail _max_shapes_thumbnail = 100 _drag_modes: ClassVar[dict[Mode, Callable[['Shapes', Event], Any]]] = { Mode.PAN_ZOOM: no_op, Mode.TRANSFORM: transform_with_box, Mode.SELECT: select, Mode.DIRECT: select, Mode.VERTEX_INSERT: vertex_insert, Mode.VERTEX_REMOVE: vertex_remove, Mode.ADD_RECTANGLE: add_rectangle, Mode.ADD_ELLIPSE: add_ellipse, Mode.ADD_LINE: add_line, Mode.ADD_PATH: add_path_polygon, Mode.ADD_POLYGON: add_path_polygon, Mode.ADD_POLYGON_LASSO: add_path_polygon_lasso, } _move_modes: ClassVar[dict[Mode, Callable[['Shapes', Event], Any]]] = { Mode.PAN_ZOOM: no_op, Mode.TRANSFORM: highlight_box_handles, Mode.SELECT: highlight, Mode.DIRECT: highlight, Mode.VERTEX_INSERT: highlight, Mode.VERTEX_REMOVE: highlight, Mode.ADD_RECTANGLE: no_op, Mode.ADD_ELLIPSE: no_op, Mode.ADD_LINE: no_op, Mode.ADD_PATH: polygon_creating, Mode.ADD_POLYGON: polygon_creating, Mode.ADD_POLYGON_LASSO: polygon_creating, } _double_click_modes: ClassVar[ dict[Mode, Callable[['Shapes', Event], Any]] ] = { Mode.PAN_ZOOM: no_op, Mode.TRANSFORM: no_op, Mode.SELECT: no_op, Mode.DIRECT: no_op, Mode.VERTEX_INSERT: no_op, Mode.VERTEX_REMOVE: no_op, Mode.ADD_RECTANGLE: no_op, Mode.ADD_ELLIPSE: no_op, Mode.ADD_LINE: no_op, Mode.ADD_PATH: finish_drawing_shape, Mode.ADD_POLYGON: finish_drawing_shape, Mode.ADD_POLYGON_LASSO: no_op, } _cursor_modes: ClassVar[dict[Mode, str]] = { Mode.PAN_ZOOM: 'standard', Mode.TRANSFORM: 'standard', Mode.SELECT: 'pointing', Mode.DIRECT: 'pointing', Mode.VERTEX_INSERT: 'cross', Mode.VERTEX_REMOVE: 'cross', Mode.ADD_RECTANGLE: 'cross', Mode.ADD_ELLIPSE: 'cross', Mode.ADD_LINE: 'cross', Mode.ADD_PATH: 'cross', Mode.ADD_POLYGON: 'cross', Mode.ADD_POLYGON_LASSO: 'cross', } _interactive_modes: ClassVar[set[Mode]] = { Mode.PAN_ZOOM, } def __init__( self, data=None, ndim=None, *, affine=None, axis_labels=None, blending='translucent', cache=True, edge_color='#777777', edge_color_cycle=None, edge_colormap='viridis', edge_contrast_limits=None, edge_width=1, experimental_clipping_planes=None, face_color='white', face_color_cycle=None, face_colormap='viridis', face_contrast_limits=None, feature_defaults=None, features=None, metadata=None, name=None, opacity=0.7, projection_mode='none', properties=None, property_choices=None, rotate=None, scale=None, shape_type='rectangle', shear=None, text=None, translate=None, units=None, visible=True, z_index=0, ) -> None: if data is None or len(data) == 0: if ndim is None: ndim = 2 data = np.empty((0, 0, ndim)) else: data, shape_type = extract_shape_type(data, shape_type) data_ndim = get_shape_ndim(data) if ndim is not None and ndim != data_ndim: raise ValueError( trans._( 'Shape dimensions must be equal to ndim', deferred=True, ) ) ndim = data_ndim super().__init__( data, ndim, affine=affine, axis_labels=axis_labels, blending=blending, cache=cache, experimental_clipping_planes=experimental_clipping_planes, metadata=metadata, name=name, opacity=opacity, projection_mode=projection_mode, rotate=rotate, scale=scale, shear=shear, translate=translate, units=units, visible=visible, ) self.events.add( edge_width=Event, edge_color=Event, face_color=Event, properties=Event, current_edge_color=Event, current_face_color=Event, current_properties=Event, highlight=Event, features=Event, feature_defaults=Event, ) # Flag set to false to block thumbnail refresh self._allow_thumbnail_update = True self._display_order_stored = [] self._ndisplay_stored = self._slice_input.ndisplay self._feature_table = _FeatureTable.from_layer( features=features, feature_defaults=feature_defaults, properties=properties, property_choices=property_choices, num_data=number_of_shapes(data), ) # The following shape properties are for the new shapes that will # be drawn. Each shape has a corresponding property with the # value for itself if np.isscalar(edge_width): self._current_edge_width = edge_width else: self._current_edge_width = 1 self._data_view = ShapeList(ndisplay=self._slice_input.ndisplay) self._data_view.slice_key = np.array(self._data_slice.point)[ self._slice_input.not_displayed ] self._value = (None, None) self._value_stored = (None, None) self._moving_value: tuple[Optional[int], Optional[int]] = (None, None) self._selected_data = set() self._selected_data_stored = set() self._selected_data_history = set() self._selected_box = None self._last_cursor_position = None self._drag_start = None self._fixed_vertex = None self._fixed_aspect = False self._aspect_ratio = 1 self._is_moving = False # _moving_coordinates are needed for fixing aspect ratio during # a resize, it stores the last pointer coordinate value that happened # during a mouse move to that pressing/releasing shift # can trigger a redraw of the shape with a fixed aspect ratio. self._moving_coordinates = None self._fixed_index = 0 self._is_selecting = False self._drag_box = None self._drag_box_stored = None self._is_creating = False self._clipboard: dict[str, Shapes] = {} self._status = self.mode self._init_shapes( data, shape_type=shape_type, edge_width=edge_width, edge_color=edge_color, edge_color_cycle=edge_color_cycle, edge_colormap=edge_colormap, edge_contrast_limits=edge_contrast_limits, face_color=face_color, face_color_cycle=face_color_cycle, face_colormap=face_colormap, face_contrast_limits=face_contrast_limits, z_index=z_index, ) # set the current_* properties if len(data) > 0: self._current_edge_color = self.edge_color[-1] self._current_face_color = self.face_color[-1] elif len(data) == 0 and len(self.properties) > 0: self._initialize_current_color_for_empty_layer(edge_color, 'edge') self._initialize_current_color_for_empty_layer(face_color, 'face') elif len(data) == 0 and len(self.properties) == 0: self._current_edge_color = transform_color_with_defaults( num_entries=1, colors=edge_color, elem_name='edge_color', default='black', ) self._current_face_color = transform_color_with_defaults( num_entries=1, colors=face_color, elem_name='face_color', default='black', ) self._text = TextManager._from_layer( text=text, features=self.features, ) # Trigger generation of view slice and thumbnail self.refresh() def _initialize_current_color_for_empty_layer( self, color: ColorType, attribute: str ): """Initialize current_{edge,face}_color when starting with empty layer. Parameters ---------- color : (N, 4) array or str The value for setting edge or face_color attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color or 'face' for face_color. """ color_mode = getattr(self, f'_{attribute}_color_mode') if color_mode == ColorMode.DIRECT: curr_color = transform_color_with_defaults( num_entries=1, colors=color, elem_name=f'{attribute}_color', default='white', ) elif color_mode == ColorMode.CYCLE: color_cycle = getattr(self, f'_{attribute}_color_cycle') curr_color = transform_color(next(color_cycle)) # add the new color cycle mapping color_property = getattr(self, f'_{attribute}_color_property') prop_value = self.feature_defaults[color_property][0] color_cycle_map = getattr(self, f'{attribute}_color_cycle_map') color_cycle_map[prop_value] = np.squeeze(curr_color) setattr(self, f'{attribute}_color_cycle_map', color_cycle_map) elif color_mode == ColorMode.COLORMAP: color_property = getattr(self, f'_{attribute}_color_property') prop_value = self.feature_defaults[color_property][0] colormap = getattr(self, f'{attribute}_colormap') contrast_limits = getattr(self, f'_{attribute}_contrast_limits') curr_color, _ = map_property( prop=prop_value, colormap=colormap, contrast_limits=contrast_limits, ) setattr(self, f'_current_{attribute}_color', curr_color) @property def data(self): """list: Each element is an (N, D) array of the vertices of a shape.""" return self._data_view.data @data.setter def data(self, data): self._finish_drawing() prior_data = len(self.data) > 0 data, shape_type = extract_shape_type(data) n_new_shapes = number_of_shapes(data) # not given a shape_type through data if shape_type is None: shape_type = self.shape_type edge_widths = self._data_view.edge_widths edge_color = self._data_view.edge_color face_color = self._data_view.face_color z_indices = self._data_view.z_indices # fewer shapes, trim attributes if self.nshapes > n_new_shapes: shape_type = shape_type[:n_new_shapes] edge_widths = edge_widths[:n_new_shapes] z_indices = z_indices[:n_new_shapes] edge_color = edge_color[:n_new_shapes] face_color = face_color[:n_new_shapes] # more shapes, add attributes elif self.nshapes < n_new_shapes: n_shapes_difference = n_new_shapes - self.nshapes shape_type = ( shape_type + [get_default_shape_type(shape_type)] * n_shapes_difference ) edge_widths = edge_widths + [1] * n_shapes_difference z_indices = z_indices + [0] * n_shapes_difference edge_color = np.concatenate( ( edge_color, self._get_new_shape_color(n_shapes_difference, 'edge'), ) ) face_color = np.concatenate( ( face_color, self._get_new_shape_color(n_shapes_difference, 'face'), ) ) data_not_empty = ( data is not None and (isinstance(data, np.ndarray) and data.size > 0) or (isinstance(data, list) and len(data) > 0) ) kwargs = { 'value': self.data, 'vertex_indices': ((),), 'data_indices': tuple(i for i in range(len(self.data))), } if prior_data and data_not_empty: kwargs['action'] = ActionType.CHANGING elif data_not_empty: kwargs['action'] = ActionType.ADDING kwargs['data_indices'] = tuple(i for i in range(len(data))) else: kwargs['action'] = ActionType.REMOVING self.events.data(**kwargs) self._data_view = ShapeList(ndisplay=self._slice_input.ndisplay) self._data_view.slice_key = np.array(self._data_slice.point)[ self._slice_input.not_displayed ] self._add_shapes( data, shape_type=shape_type, edge_width=edge_widths, edge_color=edge_color, face_color=face_color, z_index=z_indices, n_new_shapes=n_new_shapes, ) self._update_dims() kwargs['data_indices'] = tuple(i for i in range(len(data))) kwargs['value'] = self.data if prior_data and data_not_empty: kwargs['action'] = ActionType.CHANGED elif data_not_empty: kwargs['action'] = ActionType.ADDED else: kwargs['action'] = ActionType.REMOVED self.events.data(**kwargs) self._reset_editable() def _on_selection(self, selected: bool): # this method is slated for removal. don't add anything new. if not selected: self._finish_drawing() @property def features(self): """Dataframe-like features table. It is an implementation detail that this is a `pandas.DataFrame`. In the future, we will target the currently-in-development Data API dataframe protocol [1]. This will enable us to use alternate libraries such as xarray or cuDF for additional features without breaking existing usage of this. If you need to specifically rely on the pandas API, please coerce this to a `pandas.DataFrame` using `features_to_pandas_dataframe`. References ---------- .. [1]: https://data-apis.org/dataframe-protocol/latest/API.html """ return self._feature_table.values @features.setter def features( self, features: Union[dict[str, np.ndarray], pd.DataFrame], ) -> None: self._feature_table.set_values(features, num_data=self.nshapes) if self._face_color_property and ( self._face_color_property not in self.features ): self._face_color_property = '' warnings.warn( trans._( 'property used for face_color dropped', deferred=True, ), RuntimeWarning, ) if self._edge_color_property and ( self._edge_color_property not in self.features ): self._edge_color_property = '' warnings.warn( trans._( 'property used for edge_color dropped', deferred=True, ), RuntimeWarning, ) self.text.refresh(self.features) self.events.properties() self.events.features() @property def feature_defaults(self): """Dataframe-like with one row of feature default values. See `features` for more details on the type of this property. """ return self._feature_table.defaults @feature_defaults.setter def feature_defaults( self, defaults: Union[dict[str, Any], pd.DataFrame] ) -> None: self._feature_table.set_defaults(defaults) self.events.current_properties() self.events.feature_defaults() @property def properties(self) -> dict[str, np.ndarray]: """dict {str: np.ndarray (N,)}, DataFrame: Annotations for each shape""" return self._feature_table.properties() @properties.setter def properties(self, properties: dict[str, Array]): self.features = properties @property def property_choices(self) -> dict[str, np.ndarray]: return self._feature_table.choices() def _get_ndim(self): """Determine number of dimensions of the layer.""" ndim = self.ndim if self.nshapes == 0 else self.data[0].shape[1] return ndim @property def _extent_data(self) -> np.ndarray: """Extent of layer in data coordinates. Returns ------- extent_data : array, shape (2, D) """ if len(self.data) == 0: extrema = np.full((2, self.ndim), np.nan) else: maxs = np.max([np.max(d, axis=0) for d in self.data], axis=0) mins = np.min([np.min(d, axis=0) for d in self.data], axis=0) extrema = np.vstack([mins, maxs]) return extrema @property def nshapes(self): """int: Total number of shapes.""" return len(self._data_view.shapes) @property def current_edge_width(self): """float: Width of shape edges including lines and paths.""" return self._current_edge_width @current_edge_width.setter def current_edge_width(self, edge_width): self._current_edge_width = edge_width if self._update_properties: for i in self.selected_data: self._data_view.update_edge_width(i, edge_width) self.events.edge_width() @property def current_edge_color(self): """str: color of shape edges including lines and paths.""" hex_ = rgb_to_hex(self._current_edge_color)[0] return hex_to_name.get(hex_, hex_) @current_edge_color.setter def current_edge_color(self, edge_color): self._current_edge_color = transform_color(edge_color) if self._update_properties: for i in self.selected_data: self._data_view.update_edge_color(i, self._current_edge_color) self.events.edge_color() self._update_thumbnail() self.events.current_edge_color() @property def current_face_color(self): """str: color of shape faces.""" hex_ = rgb_to_hex(self._current_face_color)[0] return hex_to_name.get(hex_, hex_) @current_face_color.setter def current_face_color(self, face_color): self._current_face_color = transform_color(face_color) if self._update_properties: for i in self.selected_data: self._data_view.update_face_color(i, self._current_face_color) self.events.face_color() self._update_thumbnail() self.events.current_face_color() @property def current_properties(self) -> dict[str, np.ndarray]: """dict{str: np.ndarray(1,)}: properties for the next added shape.""" return self._feature_table.currents() @current_properties.setter def current_properties(self, current_properties): update_indices = None if ( self._update_properties and len(self.selected_data) > 0 and self._mode in [Mode.SELECT, Mode.PAN_ZOOM] ): update_indices = list(self.selected_data) self._feature_table.set_currents( current_properties, update_indices=update_indices ) if update_indices is not None: self.refresh_colors() self.events.properties() self.events.features() self.events.current_properties() self.events.feature_defaults() @property def shape_type(self): """list of str: name of shape type for each shape.""" return self._data_view.shape_types @shape_type.setter def shape_type(self, shape_type): self._finish_drawing() new_data_view = ShapeList() shape_inputs = zip( self._data_view.data, ensure_iterable(shape_type), self._data_view.edge_widths, self._data_view.edge_color, self._data_view.face_color, self._data_view.z_indices, ) self._add_shapes_to_view(shape_inputs, new_data_view) self._data_view = new_data_view self._update_dims() @property def edge_color(self): """(N x 4) np.ndarray: Array of RGBA face colors for each shape""" return self._data_view.edge_color @edge_color.setter def edge_color(self, edge_color): self._set_color(edge_color, 'edge') self.events.edge_color() self._update_thumbnail() @property def edge_color_cycle(self) -> np.ndarray: """Union[list, np.ndarray] : Color cycle for edge_color. Can be a list of colors defined by name, RGB or RGBA """ return self._edge_color_cycle_values @edge_color_cycle.setter def edge_color_cycle(self, edge_color_cycle: Union[list, np.ndarray]): self._set_color_cycle(np.asarray(edge_color_cycle), 'edge') @property def edge_colormap(self) -> Colormap: """Return the colormap to be applied to a property to get the edge color. Returns ------- colormap : napari.utils.Colormap The Colormap object. """ return self._edge_colormap @edge_colormap.setter def edge_colormap(self, colormap: ValidColormapArg): self._edge_colormap = ensure_colormap(colormap) @property def edge_contrast_limits(self) -> Union[tuple[float, float], None]: """None, (float, float): contrast limits for mapping the edge_color colormap property to 0 and 1 """ return self._edge_contrast_limits @edge_contrast_limits.setter def edge_contrast_limits( self, contrast_limits: Union[None, tuple[float, float]] ): self._edge_contrast_limits = contrast_limits @property def edge_color_mode(self) -> str: """str: Edge color setting mode DIRECT (default mode) allows each shape color to be set arbitrarily CYCLE allows the color to be set via a color cycle over an attribute COLORMAP allows color to be set via a color map over an attribute """ return str(self._edge_color_mode) @edge_color_mode.setter def edge_color_mode(self, edge_color_mode: Union[str, ColorMode]): self._set_color_mode(edge_color_mode, 'edge') @property def face_color(self): """(N x 4) np.ndarray: Array of RGBA face colors for each shape""" return self._data_view.face_color @face_color.setter def face_color(self, face_color): self._set_color(face_color, 'face') self.events.face_color() self._update_thumbnail() @property def face_color_cycle(self) -> np.ndarray: """Union[np.ndarray, cycle]: Color cycle for face_color Can be a list of colors defined by name, RGB or RGBA """ return self._face_color_cycle_values @face_color_cycle.setter def face_color_cycle(self, face_color_cycle: Union[np.ndarray, cycle]): self._set_color_cycle(face_color_cycle, 'face') @property def face_colormap(self) -> Colormap: """Return the colormap to be applied to a property to get the face color. Returns ------- colormap : napari.utils.Colormap The Colormap object. """ return self._face_colormap @face_colormap.setter def face_colormap(self, colormap: ValidColormapArg): self._face_colormap = ensure_colormap(colormap) @property def face_contrast_limits(self) -> Union[None, tuple[float, float]]: """None, (float, float) : clims for mapping the face_color colormap property to 0 and 1 """ return self._face_contrast_limits @face_contrast_limits.setter def face_contrast_limits( self, contrast_limits: Union[None, tuple[float, float]] ): self._face_contrast_limits = contrast_limits @property def face_color_mode(self) -> str: """str: Face color setting mode DIRECT (default mode) allows each shape color to be set arbitrarily CYCLE allows the color to be set via a color cycle over an attribute COLORMAP allows color to be set via a color map over an attribute """ return str(self._face_color_mode) @face_color_mode.setter def face_color_mode(self, face_color_mode): self._set_color_mode(face_color_mode, 'face') def _set_color_mode( self, color_mode: Union[ColorMode, str], attribute: str ): """Set the face_color_mode or edge_color_mode property Parameters ---------- color_mode : str, ColorMode The value for setting edge or face_color_mode. If color_mode is a string, it should be one of: 'direct', 'cycle', or 'colormap' attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_colo_moder or 'face' for face_color_mode. """ color_mode = ColorMode(color_mode) if color_mode == ColorMode.DIRECT: setattr(self, f'_{attribute}_color_mode', color_mode) elif color_mode in (ColorMode.CYCLE, ColorMode.COLORMAP): color_property = getattr(self, f'_{attribute}_color_property') if color_property == '': if self.properties: new_color_property = next(iter(self.properties)) setattr( self, f'_{attribute}_color_property', new_color_property, ) warnings.warn( trans._( '_{attribute}_color_property was not set, setting to: {new_color_property}', deferred=True, attribute=attribute, new_color_property=new_color_property, ) ) else: raise ValueError( trans._( 'There must be a valid Shapes.properties to use {color_mode}', deferred=True, color_mode=color_mode, ) ) # ColorMode.COLORMAP can only be applied to numeric properties color_property = getattr(self, f'_{attribute}_color_property') if (color_mode == ColorMode.COLORMAP) and not issubclass( self.properties[color_property].dtype.type, np.number ): raise TypeError( trans._( 'selected property must be numeric to use ColorMode.COLORMAP', deferred=True, ) ) setattr(self, f'_{attribute}_color_mode', color_mode) self.refresh_colors() def _set_color_cycle( self, color_cycle: Union[np.ndarray, cycle], attribute: str ): """Set the face_color_cycle or edge_color_cycle property Parameters ---------- color_cycle : (N, 4) or (N, 1) array The value for setting edge or face_color_cycle attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color or 'face' for face_color. """ transformed_color_cycle, transformed_colors = transform_color_cycle( color_cycle=color_cycle, elem_name=f'{attribute}_color_cycle', default='white', ) setattr(self, f'_{attribute}_color_cycle_values', transformed_colors) setattr(self, f'_{attribute}_color_cycle', transformed_color_cycle) if self._update_properties is True: color_mode = getattr(self, f'_{attribute}_color_mode') if color_mode == ColorMode.CYCLE: self.refresh_colors(update_color_mapping=True) @property def edge_width(self): """list of float: edge width for each shape.""" return self._data_view.edge_widths @edge_width.setter def edge_width(self, width): """Set edge width of shapes using float or list of float. If list of float, must be of equal length to n shapes Parameters ---------- width : float or list of float width of all shapes, or each shape if list """ if isinstance(width, list): if not len(width) == self.nshapes: raise ValueError( trans._('Length of list does not match number of shapes') ) widths = width else: widths = [width for _ in range(self.nshapes)] for i, width in enumerate(widths): self._data_view.update_edge_width(i, width) @property def z_index(self): """list of int: z_index for each shape.""" return self._data_view.z_indices @z_index.setter def z_index(self, z_index): """Set z_index of shape using either int or list of int. When list of int is provided, must be of equal length to n shapes. Parameters ---------- z_index : int or list of int z-index of shapes """ if isinstance(z_index, list): if not len(z_index) == self.nshapes: raise ValueError( trans._('Length of list does not match number of shapes') ) z_indices = z_index else: z_indices = [z_index for _ in range(self.nshapes)] for i, z_idx in enumerate(z_indices): self._data_view.update_z_index(i, z_idx) @property def selected_data(self): """set: set of currently selected shapes.""" return self._selected_data @selected_data.setter def selected_data(self, selected_data): self._selected_data = set(selected_data) self._selected_box = self.interaction_box(self._selected_data) # Update properties based on selected shapes if len(selected_data) > 0: selected_data_indices = list(selected_data) selected_face_colors = self._data_view._face_color[ selected_data_indices ] if ( unique_face_color := _unique_element(selected_face_colors) ) is not None: with self.block_update_properties(): self.current_face_color = unique_face_color selected_edge_colors = self._data_view._edge_color[ selected_data_indices ] if ( unique_edge_color := _unique_element(selected_edge_colors) ) is not None: with self.block_update_properties(): self.current_edge_color = unique_edge_color unique_edge_width = _unique_element( np.array( [ self._data_view.shapes[i].edge_width for i in selected_data ] ) ) if unique_edge_width is not None: with self.block_update_properties(): self.current_edge_width = unique_edge_width unique_properties = {} for k, v in self.properties.items(): unique_properties[k] = _unique_element( v[selected_data_indices] ) if all(p is not None for p in unique_properties.values()): with self.block_update_properties(): self.current_properties = unique_properties @property def _is_moving(self) -> bool: return self._private_is_moving @_is_moving.setter def _is_moving(self, value): assert value in (True, False) if value: assert self._moving_coordinates is not None self._private_is_moving = value def _set_color(self, color, attribute: str): """Set the face_color or edge_color property Parameters ---------- color : (N, 4) array or str The value for setting edge or face_color attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color or 'face' for face_color. """ if self._is_color_mapped(color): if guess_continuous(self.properties[color]): setattr(self, f'_{attribute}_color_mode', ColorMode.COLORMAP) else: setattr(self, f'_{attribute}_color_mode', ColorMode.CYCLE) setattr(self, f'_{attribute}_color_property', color) self.refresh_colors(update_color_mapping=True) else: if len(self.data) > 0: transformed_color = transform_color_with_defaults( num_entries=len(self.data), colors=color, elem_name='face_color', default='white', ) colors = normalize_and_broadcast_colors( len(self.data), transformed_color ) else: colors = np.empty((0, 4)) setattr(self._data_view, f'{attribute}_color', colors) setattr(self, f'_{attribute}_color_mode', ColorMode.DIRECT) color_event = getattr(self.events, f'{attribute}_color') color_event()
[docs] def refresh_colors(self, update_color_mapping: bool = False): """Calculate and update face and edge colors if using a cycle or color map Parameters ---------- update_color_mapping : bool If set to True, the function will recalculate the color cycle map or colormap (whichever is being used). If set to False, the function will use the current color cycle map or color map. For example, if you are adding/modifying shapes and want them to be colored with the same mapping as the other shapes (i.e., the new shapes shouldn't affect the color cycle map or colormap), set update_color_mapping=False. Default value is False. """ self._refresh_color('face', update_color_mapping) self._refresh_color('edge', update_color_mapping)
def _refresh_color( self, attribute: str, update_color_mapping: bool = False ): """Calculate and update face or edge colors if using a cycle or color map Parameters ---------- attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color or 'face' for face_color. update_color_mapping : bool If set to True, the function will recalculate the color cycle map or colormap (whichever is being used). If set to False, the function will use the current color cycle map or color map. For example, if you are adding/modifying shapes and want them to be colored with the same mapping as the other shapes (i.e., the new shapes shouldn't affect the color cycle map or colormap), set update_color_mapping=False. Default value is False. """ if self._update_properties: color_mode = getattr(self, f'_{attribute}_color_mode') if color_mode in [ColorMode.CYCLE, ColorMode.COLORMAP]: colors = self._map_color(attribute, update_color_mapping) setattr(self._data_view, f'{attribute}_color', colors) color_event = getattr(self.events, f'{attribute}_color') color_event() def _initialize_color(self, color, attribute: str, n_shapes: int): """Get the face/edge colors the Shapes layer will be initialized with Parameters ---------- color : (N, 4) array or str The value for setting edge or face_color attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color or 'face' for face_color. Returns ------- init_colors : (N, 4) array or str The calculated values for setting edge or face_color """ if self._is_color_mapped(color): if guess_continuous(self.properties[color]): setattr(self, f'_{attribute}_color_mode', ColorMode.COLORMAP) else: setattr(self, f'_{attribute}_color_mode', ColorMode.CYCLE) setattr(self, f'_{attribute}_color_property', color) init_colors = self._map_color( attribute, update_color_mapping=False ) else: if n_shapes > 0: transformed_color = transform_color_with_defaults( num_entries=n_shapes, colors=color, elem_name='face_color', default='white', ) init_colors = normalize_and_broadcast_colors( n_shapes, transformed_color ) else: init_colors = np.empty((0, 4)) setattr(self, f'_{attribute}_color_mode', ColorMode.DIRECT) return init_colors def _map_color(self, attribute: str, update_color_mapping: bool = False): """Calculate the mapping for face or edge colors if using a cycle or color map Parameters ---------- attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color or 'face' for face_color. update_color_mapping : bool If set to True, the function will recalculate the color cycle map or colormap (whichever is being used). If set to False, the function will use the current color cycle map or color map. For example, if you are adding/modifying shapes and want them to be colored with the same mapping as the other shapes (i.e., the new shapes shouldn't affect the color cycle map or colormap), set update_color_mapping=False. Default value is False. Returns ------- colors : (N, 4) array or str The calculated values for setting edge or face_color """ color_mode = getattr(self, f'_{attribute}_color_mode') if color_mode == ColorMode.CYCLE: color_property = getattr(self, f'_{attribute}_color_property') color_properties = self.properties[color_property] if update_color_mapping: color_cycle = getattr(self, f'_{attribute}_color_cycle') color_cycle_map = { k: np.squeeze(transform_color(c)) for k, c in zip(np.unique(color_properties), color_cycle) } setattr(self, f'{attribute}_color_cycle_map', color_cycle_map) else: # add properties if they are not in the colormap # and update_color_mapping==False color_cycle_map = getattr(self, f'{attribute}_color_cycle_map') color_cycle_keys = [*color_cycle_map] props_in_map = np.isin(color_properties, color_cycle_keys) if not np.all(props_in_map): props_to_add = np.unique( color_properties[np.logical_not(props_in_map)] ) color_cycle = getattr(self, f'_{attribute}_color_cycle') for prop in props_to_add: color_cycle_map[prop] = np.squeeze( transform_color(next(color_cycle)) ) setattr( self, f'{attribute}_color_cycle_map', color_cycle_map, ) colors = np.array([color_cycle_map[x] for x in color_properties]) if len(colors) == 0: colors = np.empty((0, 4)) elif color_mode == ColorMode.COLORMAP: color_property = getattr(self, f'_{attribute}_color_property') color_properties = self.properties[color_property] if len(color_properties) > 0: contrast_limits = getattr(self, f'{attribute}_contrast_limits') colormap = getattr(self, f'{attribute}_colormap') if update_color_mapping or contrast_limits is None: colors, contrast_limits = map_property( prop=color_properties, colormap=colormap ) setattr( self, f'{attribute}_contrast_limits', contrast_limits, ) else: colors, _ = map_property( prop=color_properties, colormap=colormap, contrast_limits=contrast_limits, ) else: colors = np.empty((0, 4)) return colors def _get_new_shape_color(self, adding: int, attribute: str): """Get the color for the shape(s) to be added. Parameters ---------- adding : int the number of shapes that were added (and thus the number of color entries to add) attribute : str in {'edge', 'face'} The name of the attribute to set the color of. Should be 'edge' for edge_color_mode or 'face' for face_color_mode. Returns ------- new_colors : (N, 4) array (Nx4) RGBA array of colors for the N new shapes """ color_mode = getattr(self, f'_{attribute}_color_mode') if color_mode == ColorMode.DIRECT: current_face_color = getattr(self, f'_current_{attribute}_color') new_colors = np.tile(current_face_color, (adding, 1)) elif color_mode == ColorMode.CYCLE: property_name = getattr(self, f'_{attribute}_color_property') color_property_value = self.current_properties[property_name][0] # check if the new color property is in the cycle map # and add it if it is not color_cycle_map = getattr(self, f'{attribute}_color_cycle_map') color_cycle_keys = [*color_cycle_map] if color_property_value not in color_cycle_keys: color_cycle = getattr(self, f'_{attribute}_color_cycle') color_cycle_map[color_property_value] = np.squeeze( transform_color(next(color_cycle)) ) setattr(self, f'{attribute}_color_cycle_map', color_cycle_map) new_colors = np.tile( color_cycle_map[color_property_value], (adding, 1) ) elif color_mode == ColorMode.COLORMAP: property_name = getattr(self, f'_{attribute}_color_property') color_property_value = self.current_properties[property_name][0] colormap = getattr(self, f'{attribute}_colormap') contrast_limits = getattr(self, f'_{attribute}_contrast_limits') fc, _ = map_property( prop=color_property_value, colormap=colormap, contrast_limits=contrast_limits, ) new_colors = np.tile(fc, (adding, 1)) return new_colors def _is_color_mapped(self, color): """determines if the new color argument is for directly setting or cycle/colormap""" if isinstance(color, str): return color in self.properties if isinstance(color, (list, np.ndarray)): return False raise ValueError( trans._( 'face_color should be the name of a color, an array of colors, or the name of an property', deferred=True, ) ) def _get_state(self) -> dict[str, Any]: """Get dictionary of layer state. Returns ------- state : dict of str to Any Dictionary of layer state. """ state = self._get_base_state() face_color = self.face_color edge_color = self.edge_color if not face_color.size: face_color = self._current_face_color if not edge_color.size: edge_color = self._current_edge_color state.update( { 'ndim': self.ndim, 'properties': self.properties, 'property_choices': self.property_choices, 'text': self.text.dict(), 'shape_type': self.shape_type, 'opacity': self.opacity, 'z_index': self.z_index, 'edge_width': self.edge_width, 'face_color': face_color, 'face_color_cycle': self.face_color_cycle, 'face_colormap': self.face_colormap.dict(), 'face_contrast_limits': self.face_contrast_limits, 'edge_color': edge_color, 'edge_color_cycle': self.edge_color_cycle, 'edge_colormap': self.edge_colormap.dict(), 'edge_contrast_limits': self.edge_contrast_limits, 'data': self.data, 'features': self.features, 'feature_defaults': self.feature_defaults, } ) return state @property def _indices_view(self): return np.where(self._data_view._displayed)[0] @property def _view_text(self) -> np.ndarray: """Get the values of the text elements in view Returns ------- text : (N x 1) np.ndarray Array of text strings for the N text elements in view """ # This may be triggered when the string encoding instance changed, # in which case it has no cached values, so generate them here. self.text.string._apply(self.features) return self.text.view_text(self._indices_view) @property def _view_text_coords(self) -> tuple[np.ndarray, str, str]: """Get the coordinates of the text elements in view Returns ------- text_coords : (N x D) np.ndarray Array of coordinates for the N text elements in view anchor_x : str The vispy text anchor for the x axis anchor_y : str The vispy text anchor for the y axis """ ndisplay = self._slice_input.ndisplay order = self._slice_input.order # get the coordinates of the vertices for the shapes in view in_view_shapes_coords = [ self._data_view.data[i] for i in self._indices_view ] # get the coordinates for the dimensions being displayed sliced_in_view_coords = [ position[:, self._slice_input.displayed] for position in in_view_shapes_coords ] # TODO: fix types here with np.asarray(sliced_in_view_coords) # but blocked by https://github.com/napari/napari/issues/6294 return self.text.compute_text_coords( sliced_in_view_coords, ndisplay, order ) @property def _view_text_color(self) -> np.ndarray: """Get the colors of the text elements at the given indices.""" self.text.color._apply(self.features) return self.text._view_color(self._indices_view) @property def mode(self): """MODE: Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas. The SELECT mode allows for entire shapes to be selected, moved and resized. The DIRECT mode allows for shapes to be selected and their individual vertices to be moved. The VERTEX_INSERT and VERTEX_REMOVE modes allow for individual vertices either to be added to or removed from shapes that are already selected. Note that shapes cannot be selected in this mode. The ADD_RECTANGLE, ADD_ELLIPSE, ADD_LINE, ADD_PATH, and ADD_POLYGON modes all allow for their corresponding shape type to be added. """ return str(self._mode) @mode.setter def mode(self, val: Union[str, Mode]): mode = self._mode_setter_helper(val) if mode == self._mode: return self._mode = mode self.events.mode(mode=mode) draw_modes = { Mode.SELECT, Mode.DIRECT, Mode.VERTEX_INSERT, Mode.VERTEX_REMOVE, } # don't update thumbnail on mode changes if not (mode in draw_modes and self._mode in draw_modes): # Shapes._finish_drawing() calls Shapes.refresh() via Shapes._update_dims() # so we need to block thumbnail update from here # TODO: this is not great... ideally we should no longer need this blocking system # but maybe follow up PR with self.block_thumbnail_update(): self._finish_drawing() else: self.refresh(data_displayed=False, extent=False, thumbnail=False) def _reset_editable(self) -> None: self.editable = self._slice_input.ndisplay == 2 def _on_editable_changed(self) -> None: if not self.editable: self.mode = Mode.PAN_ZOOM
[docs] def add_rectangles( self, data, *, edge_width=None, edge_color=None, face_color=None, z_index=None, ): """Add rectangles to the current layer. Parameters ---------- data : Array | List[Array] List of rectangle data where each element is a (4, D) array of 4 vertices in D dimensions, or in 2D a (2, 2) array of 2 vertices that are the top-left and bottom-right corners. Can be a 3-dimensional array for multiple shapes, or list of 2 or 4 vertices for a single shape. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. """ # rectangles can have either 4 vertices or (top left, bottom right) valid_vertices_per_shape = (2, 4) validate_num_vertices( data, 'rectangle', valid_vertices=valid_vertices_per_shape ) self.add( data, shape_type='rectangle', edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, )
[docs] def add_ellipses( self, data, *, edge_width=None, edge_color=None, face_color=None, z_index=None, ): """Add ellipses to the current layer. Parameters ---------- data : Array | List[Array] List of ellipse data where each element is a (4, D) array of 4 vertices in D dimensions representing a bounding box, or in 2D a (2, 2) array of center position and radii magnitudes. Can be a 3-dimensional array for multiple shapes, or list of 2 or 4 vertices for a single shape. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. """ valid_elem_per_shape = (2, 4) validate_num_vertices( data, 'ellipse', valid_vertices=valid_elem_per_shape ) self.add( data, shape_type='ellipse', edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, )
[docs] def add_polygons( self, data, *, edge_width=None, edge_color=None, face_color=None, z_index=None, ): """Add polygons to the current layer. Parameters ---------- data : Array | List[Array] List of polygon data where each element is a (V, D) array of V vertices in D dimensions representing a polygon. Can be a 3-dimensional array if polygons have same number of vertices, or a list of V vertices for a single polygon. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. """ min_vertices = 3 validate_num_vertices(data, 'polygon', min_vertices=min_vertices) self.add( data, shape_type='polygon', edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, )
[docs] def add_lines( self, data, *, edge_width=None, edge_color=None, face_color=None, z_index=None, ): """Add lines to the current layer. Parameters ---------- data : Array | List[Array] List of line data where each element is a (2, D) array of 2 vertices in D dimensions representing a line. Can be a 3-dimensional array for multiple shapes, or list of 2 vertices for a single shape. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. """ valid_vertices_per_line = (2,) validate_num_vertices( data, 'line', valid_vertices=valid_vertices_per_line ) self.add( data, shape_type='line', edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, )
[docs] def add_paths( self, data, *, edge_width=None, edge_color=None, face_color=None, z_index=None, ): """Add paths to the current layer. Parameters ---------- data : Array | List[Array] List of path data where each element is a (V, D) array of V vertices in D dimensions representing a path. Can be a 3-dimensional array if all paths have same number of vertices, or a list of V vertices for a single path. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. """ min_vertices_per_path = 2 validate_num_vertices(data, 'path', min_vertices=min_vertices_per_path) self.add( data, shape_type='path', edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, )
[docs] def add( self, data, *, shape_type='rectangle', edge_width=None, edge_color=None, face_color=None, z_index=None, gui=False, ): """Add shapes to the current layer. Parameters ---------- data : Array | Tuple(Array,str) | List[Array | Tuple(Array, str)] | Tuple(List[Array], str) List of shape data, where each element is either an (N, D) array of the N vertices of a shape in D dimensions or a tuple containing an array of the N vertices and the shape_type string. When a shape_type is present, it overrides keyword arg shape_type. Can be an 3-dimensional array if each shape has the same number of vertices. shape_type : string | list String of shape shape_type, must be one of "{'line', 'rectangle', 'ellipse', 'path', 'polygon'}". If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. Overridden by data shape_type, if present. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. gui : bool Whether the shape is drawn by drawing in the gui. """ data, shape_type = extract_shape_type(data, shape_type) n_new_shapes = number_of_shapes(data) if n_new_shapes > 0: self.events.data( value=self.data, action=ActionType.ADDING, data_indices=(-1,), vertex_indices=((),), ) self._add_shapes( data, shape_type=shape_type, edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, n_new_shapes=n_new_shapes, ) # This should only emit when programmatically adding as with drawing this leads to premature emit. if not gui: self.events.data( value=self.data, action=ActionType.ADDED, data_indices=(-1,), vertex_indices=((),), )
def _init_shapes( self, data, *, shape_type='rectangle', edge_width=None, edge_color=None, edge_color_cycle, edge_colormap, edge_contrast_limits, face_color=None, face_color_cycle, face_colormap, face_contrast_limits, z_index=None, ): """Add shapes to the data view. Parameters ---------- data : Array | Tuple(Array,str) | List[Array | Tuple(Array, str)] | Tuple(List[Array], str) List of shape data, where each element is either an (N, D) array of the N vertices of a shape in D dimensions or a tuple containing an array of the N vertices and the shape_type string. When a shape_type is present, it overrides keyword arg shape_type. Can be an 3-dimensional array if each shape has the same number of vertices. shape_type : string | list String of shape shape_type, must be one of "{'line', 'rectangle', 'ellipse', 'path', 'polygon'}". If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. Overriden by data shape_type, if present. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed ontop of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. """ n_shapes = number_of_shapes(data) with self.block_update_properties(): self._edge_color_property = '' self.edge_color_cycle_map = {} self.edge_colormap = edge_colormap self._edge_contrast_limits = edge_contrast_limits if edge_color_cycle is None: edge_color_cycle = deepcopy(DEFAULT_COLOR_CYCLE) self.edge_color_cycle = edge_color_cycle edge_color = self._initialize_color( edge_color, attribute='edge', n_shapes=n_shapes ) self._face_color_property = '' self.face_color_cycle_map = {} self.face_colormap = face_colormap self._face_contrast_limits = face_contrast_limits if face_color_cycle is None: face_color_cycle = deepcopy(DEFAULT_COLOR_CYCLE) self.face_color_cycle = face_color_cycle face_color = self._initialize_color( face_color, attribute='face', n_shapes=n_shapes ) with self.block_thumbnail_update(): self._add_shapes( data, shape_type=shape_type, edge_width=edge_width, edge_color=edge_color, face_color=face_color, z_index=z_index, n_new_shapes=n_shapes, ) self._data_view._update_z_order() self.refresh_colors() def _add_shapes( self, data, *, shape_type='rectangle', edge_width=None, edge_color=None, face_color=None, z_index=None, n_new_shapes=0, ): """Add shapes to the data view. Parameters ---------- data : Array | Tuple(Array,str) | List[Array | Tuple(Array, str)] | Tuple(List[Array], str) List of shape data, where each element is either an (N, D) array of the N vertices of a shape in D dimensions or a tuple containing an array of the N vertices and the shape_type string. When a shape_type is present, it overrides keyword arg shape_type. Can be an 3-dimensional array if each shape has the same number of vertices. shape_type : string | list String of shape shape_type, must be one of "{'line', 'rectangle', 'ellipse', 'path', 'polygon'}". If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. Overridden by data shape_type, if present. edge_width : float | list thickness of lines and edges. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. edge_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. face_color : str | tuple | list If string can be any color name recognized by vispy or hex value if starting with `#`. If array-like must be 1-dimensional array with 3 or 4 elements. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. z_index : int | list Specifier of z order priority. Shapes with higher z order are displayed on top of others. If a list is supplied it must be the same length as the length of `data` and each element will be applied to each shape otherwise the same value will be used for all shapes. n_new_shapes : int The number of new shapes to be added to the Shapes layer. """ if n_new_shapes > 0: total_shapes = n_new_shapes + self.nshapes self._feature_table.resize(total_shapes) if hasattr(self, 'text'): self.text.apply(self.features) if edge_color is None: edge_color = self._get_new_shape_color( n_new_shapes, attribute='edge' ) if face_color is None: face_color = self._get_new_shape_color( n_new_shapes, attribute='face' ) if edge_width is None: edge_width = self.current_edge_width if edge_color is None: edge_color = self._current_edge_color if face_color is None: face_color = self._current_face_color if self._data_view is not None: z_index = z_index or max(self._data_view._z_index, default=-1) + 1 else: z_index = z_index or 0 if len(data) > 0: if np.array(data[0]).ndim == 1: # If a single array for a shape has been passed turn into list data = [data] # transform the colors transformed_ec = transform_color_with_defaults( num_entries=len(data), colors=edge_color, elem_name='edge_color', default='white', ) transformed_edge_color = normalize_and_broadcast_colors( len(data), transformed_ec ) transformed_fc = transform_color_with_defaults( num_entries=len(data), colors=face_color, elem_name='face_color', default='white', ) transformed_face_color = normalize_and_broadcast_colors( len(data), transformed_fc ) # Turn input arguments into iterables shape_inputs = zip( data, ensure_iterable(shape_type), ensure_iterable(edge_width), transformed_edge_color, transformed_face_color, ensure_iterable(z_index), ) self._add_shapes_to_view(shape_inputs, self._data_view) self._display_order_stored = copy(self._slice_input.order) self._ndisplay_stored = copy(self._slice_input.ndisplay) self._update_dims() def _add_shapes_to_view(self, shape_inputs, data_view): """Build new shapes and add them to the _data_view""" shape_inputs = tuple(shape_inputs) # build all shapes sh_inp = tuple( ( shape_classes[ShapeType(st)]( d, edge_width=ew, z_index=z, dims_order=self._slice_input.order, ndisplay=self._slice_input.ndisplay, ), ec, fc, ) for d, st, ew, ec, fc, z in shape_inputs ) shapes, edge_colors, face_colors = tuple(zip(*sh_inp)) # Add all shapes at once (faster than adding them one by one) data_view.add( shape=shapes, edge_color=edge_colors, face_color=face_colors, z_refresh=False, ) data_view._update_z_order() @property def text(self) -> TextManager: """TextManager: The TextManager object containing the text properties""" return self._text @text.setter def text(self, text): self._text._update_from_layer( text=text, features=self.features, )
[docs] def refresh_text(self): """Refresh the text values. This is generally used if the properties were updated without changing the data """ self.text.refresh(self.features)
@property def _normalized_scale_factor(self): """Scale factor accounting for layer scale. This is often needed when calculating screen-space sizes and distances of vertices for interactivity (rescaling, adding vertices, etc). """ return self.scale_factor / self.scale[-1] @property def _normalized_vertex_radius(self): """Vertex radius normalized to screen space.""" return self._vertex_size * self._normalized_scale_factor / 2 def _set_view_slice(self): """Set the view given the slicing indices.""" with self._data_view.batched_updates(): ndisplay = self._slice_input.ndisplay if ndisplay != self._ndisplay_stored: self.selected_data = set() self._data_view.ndisplay = min(self.ndim, ndisplay) self._ndisplay_stored = ndisplay self._clipboard = {} if self._slice_input.order != self._display_order_stored: self.selected_data = set() self._data_view.update_dims_order(self._slice_input.order) self._display_order_stored = copy(self._slice_input.order) # Clear clipboard if dimensions swap self._clipboard = {} slice_key = np.array(self._data_slice.point)[ self._slice_input.not_displayed ] if not np.array_equal(slice_key, self._data_view.slice_key): self.selected_data = set() self._data_view.slice_key = slice_key
[docs] def interaction_box(self, index): """Create the interaction box around a shape or list of shapes. If a single index is passed then the bounding box will be inherited from that shapes interaction box. If list of indices is passed it will be computed directly. Parameters ---------- index : int | list Index of a single shape, or a list of shapes around which to construct the interaction box Returns ------- box : np.ndarray 10x2 array of vertices of the interaction box. The first 8 points are the corners and midpoints of the box in clockwise order starting in the upper-left corner. The 9th point is the center of the box, and the last point is the location of the rotation handle that can be used to rotate the box """ if isinstance(index, (list, np.ndarray, set)): if len(index) == 0: box = None elif len(index) == 1: box = copy(self._data_view.shapes[next(iter(index))]._box) else: indices = np.isin(self._data_view.displayed_index, list(index)) box = create_box(self._data_view.displayed_vertices[indices]) else: box = copy(self._data_view.shapes[index]._box) if box is not None: rot = box[Box.TOP_CENTER] length_box = np.linalg.norm( box[Box.BOTTOM_LEFT] - box[Box.TOP_LEFT] ) if length_box > 0: r = ( self._rotation_handle_length * self._normalized_scale_factor ) rot = ( rot - r * (box[Box.BOTTOM_LEFT] - box[Box.TOP_LEFT]) / length_box ) box = np.append(box, [rot], axis=0) return box
def _outline_shapes(self): """Find outlines of any selected or hovered shapes. Returns ------- vertices : None | np.ndarray Nx2 array of any vertices of outline or None triangles : None | np.ndarray Mx3 array of any indices of vertices for triangles of outline or None """ if self._value is not None and ( self._value[0] is not None or len(self.selected_data) > 0 ): if len(self.selected_data) > 0: index = list(self.selected_data) if self._value[0] is not None: if self._value[0] in index: pass else: index.append(self._value[0]) index.sort() else: index = self._value[0] centers, offsets, triangles = self._data_view.outline(index) vertices = centers + ( self._normalized_scale_factor * self._highlight_width * offsets ) vertices = vertices[:, ::-1] else: vertices = None triangles = None return vertices, triangles def _compute_vertices_and_box(self): """Compute location of highlight vertices and box for rendering. Returns ------- vertices : np.ndarray Nx2 array of any vertices to be rendered as Markers face_color : str String of the face color of the Markers edge_color : str String of the edge color of the Markers and Line for the box pos : np.ndarray Nx2 array of vertices of the box that will be rendered using a Vispy Line width : float Width of the box edge """ if len(self.selected_data) > 0: if self._mode == Mode.SELECT: # If in select mode just show the interaction bounding box # including its vertices and the rotation handle box = self._selected_box[Box.WITH_HANDLE] if self._value[0] is None or self._value[1] is None: face_color = 'white' else: face_color = self._highlight_color edge_color = self._highlight_color vertices = box[:, ::-1] # Use a subset of the vertices of the interaction_box to plot # the line around the edge pos = box[Box.LINE_HANDLE][:, ::-1] width = 1.5 elif self._mode in ( [ Mode.DIRECT, Mode.ADD_PATH, Mode.ADD_POLYGON, Mode.ADD_POLYGON_LASSO, Mode.ADD_RECTANGLE, Mode.ADD_ELLIPSE, Mode.ADD_LINE, Mode.VERTEX_INSERT, Mode.VERTEX_REMOVE, ] ): # If in one of these mode show the vertices of the shape itself inds = np.isin( self._data_view.displayed_index, list(self.selected_data) ) vertices = self._data_view.displayed_vertices[inds][:, ::-1] # If currently adding path don't show box over last vertex if self._mode == Mode.ADD_PATH: vertices = vertices[:-1] if self._value[0] is None or self._value[1] is None: face_color = 'white' else: face_color = self._highlight_color edge_color = self._highlight_color pos = None width = 0 else: # Otherwise show nothing vertices = np.empty((0, 2)) face_color = 'white' edge_color = 'white' pos = None width = 0 elif self._is_selecting: # If currently dragging a selection box just show an outline of # that box vertices = np.empty((0, 2)) edge_color = self._highlight_color face_color = 'white' box = create_box(self._drag_box) width = 1.5 # Use a subset of the vertices of the interaction_box to plot # the line around the edge pos = box[Box.LINE][:, ::-1] else: # Otherwise show nothing vertices = np.empty((0, 2)) face_color = 'white' edge_color = 'white' pos = None width = 0 return vertices, face_color, edge_color, pos, width def _set_highlight(self, force=False) -> None: """Render highlights of shapes. Includes boundaries, vertices, interaction boxes, and the drag selection box when appropriate. Parameters ---------- force : bool Bool that forces a redraw to occur when `True` """ # Check if any shape or vertex ids have changed since last call if ( self.selected_data == self._selected_data_stored and np.array_equal(self._value, self._value_stored) and np.array_equal(self._drag_box, self._drag_box_stored) ) and not force: return self._selected_data_stored = copy(self.selected_data) self._value_stored = copy(self._value) self._drag_box_stored = copy(self._drag_box) self.events.highlight() def _finish_drawing(self, event=None) -> None: """Reset properties used in shape drawing.""" index = copy(self._moving_value[0]) self._is_moving = False self._drag_start = None self._drag_box = None self._is_selecting = False self._fixed_vertex = None self._value = (None, None) self._moving_value = (None, None) self._last_cursor_position = None if self._is_creating is True: if self._mode == Mode.ADD_PATH: vertices = self._data_view.shapes[index].data if len(vertices) <= 2: self._data_view.remove(index) # Clear selected data to prevent issues. # See https://github.com/napari/napari/pull/6912#discussion_r1601169680 self.selected_data.clear() else: self._data_view.edit(index, vertices[:-1]) if self._mode in {Mode.ADD_POLYGON, Mode.ADD_POLYGON_LASSO}: vertices = self._data_view.shapes[index].data if len(vertices) <= 3: self._data_view.remove(index) # Clear selected data to prevent issues. # See https://github.com/napari/napari/pull/6912#discussion_r1601169680 self.selected_data.clear() elif self._mode == Mode.ADD_POLYGON: self._data_view.edit(index, vertices[:-1]) else: vertices = rdp( vertices, epsilon=get_settings().experimental.rdp_epsilon, ) self._data_view.edit( index, vertices[:-1], new_type=shape_classes[ShapeType.POLYGON], ) # handles the case that if index is not None: self.events.data( value=self.data, action=ActionType.ADDED, data_indices=(-1,), vertex_indices=((),), ) self._is_creating = False self._update_dims()
[docs] @contextmanager def block_thumbnail_update(self): """Use this context manager to block thumbnail updates""" previous = self._allow_thumbnail_update self._allow_thumbnail_update = False try: yield finally: self._allow_thumbnail_update = previous
def _update_thumbnail(self, event=None): """Update thumbnail with current shapes and colors.""" # Set the thumbnail to black, opacity 1 colormapped = np.zeros(self._thumbnail_shape) colormapped[..., 3] = 1 # if the shapes layer is empty, don't update, just leave it black if len(self.data) == 0: self.thumbnail = colormapped # don't update the thumbnail if dragging a shape elif self._is_moving is False and self._allow_thumbnail_update is True: # calculate min vals for the vertices and pad with 0.5 # the offset is needed to ensure that the top left corner of the shapes # corresponds to the top left corner of the thumbnail de = self._extent_data offset = ( np.array([de[0, d] for d in self._slice_input.displayed]) + 0.5 ) # calculate range of values for the vertices and pad with 1 # padding ensures the entire shape can be represented in the thumbnail # without getting clipped shape = np.ceil( [de[1, d] - de[0, d] + 1 for d in self._slice_input.displayed] ).astype(int) zoom_factor = np.divide( self._thumbnail_shape[:2], shape[-2:] ).min() colormapped = self._data_view.to_colors( colors_shape=self._thumbnail_shape[:2], zoom_factor=zoom_factor, offset=offset[-2:], max_shapes=self._max_shapes_thumbnail, ) self.thumbnail = colormapped
[docs] def remove_selected(self) -> None: """Remove any selected shapes.""" index = list(self.selected_data) to_remove = sorted(index, reverse=True) if len(index) > 0: self.events.data( value=self.data, action=ActionType.REMOVING, data_indices=tuple( index, ), vertex_indices=((),), ) for ind in to_remove: self._data_view.remove(ind) self._feature_table.remove(index) self.text.remove(index) self._data_view._edge_color = np.delete( self._data_view._edge_color, index, axis=0 ) self._data_view._face_color = np.delete( self._data_view._face_color, index, axis=0 ) self.events.data( value=self.data, action=ActionType.REMOVED, data_indices=tuple( index, ), vertex_indices=((),), ) self.selected_data.clear() self._finish_drawing()
def _rotate_box(self, angle, center=(0, 0)): """Perform a rotation on the selected box. Parameters ---------- angle : float angle specifying rotation of shapes in degrees. center : list coordinates of center of rotation. """ theta = np.radians(angle) transform = np.array( [[np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)]] ) box = self._selected_box - center self._selected_box = box @ transform.T + center def _scale_box(self, scale, center=(0, 0)): """Perform a scaling on the selected box. Parameters ---------- scale : float, list scalar or list specifying rescaling of shape. center : list coordinates of center of rotation. """ if not isinstance(scale, (list, np.ndarray)): scale = [scale, scale] box = self._selected_box - center box = np.array(box * scale) if not np.array_equal(box[Box.TOP_CENTER], box[Box.HANDLE]): r = self._rotation_handle_length * self._normalized_scale_factor handle_vec = box[Box.HANDLE] - box[Box.TOP_CENTER] cur_len = np.linalg.norm(handle_vec) box[Box.HANDLE] = box[Box.TOP_CENTER] + r * handle_vec / cur_len self._selected_box = box + center def _transform_box(self, transform, center=(0, 0)): """Perform a linear transformation on the selected box. Parameters ---------- transform : np.ndarray 2x2 array specifying linear transform. center : list coordinates of center of rotation. """ box = self._selected_box - center box = box @ transform.T if not np.array_equal(box[Box.TOP_CENTER], box[Box.HANDLE]): r = self._rotation_handle_length * self._normalized_scale_factor handle_vec = box[Box.HANDLE] - box[Box.TOP_CENTER] cur_len = np.linalg.norm(handle_vec) box[Box.HANDLE] = box[Box.TOP_CENTER] + r * handle_vec / cur_len self._selected_box = box + center def _update_draw( self, scale_factor, corner_pixels_displayed, shape_threshold ): prev_scale = self.scale_factor super()._update_draw( scale_factor, corner_pixels_displayed, shape_threshold ) # update highlight only if scale has changed, otherwise causes a cycle self._set_highlight(force=(prev_scale != self.scale_factor)) def _get_value(self, position): """Value of the data at a position in data coordinates. Parameters ---------- position : tuple Position in data coordinates. Returns ------- shape : int | None Index of shape if any that is at the coordinates. Returns `None` if no shape is found. vertex : int | None Index of vertex if any that is at the coordinates. Returns `None` if no vertex is found. """ if self._slice_input.ndisplay == 3: return (None, None) if self._is_moving: return self._moving_value coord = [position[i] for i in self._slice_input.displayed] # Check selected shapes value = None selected_index = list(self.selected_data) if len(selected_index) > 0: self.scale[self._slice_input.displayed] # Get the vertex sizes. They need to be rescaled by a few parameters: # - scale_factor, because vertex sizes are zoom-invariant # - scale, because vertex sizes are not affected by scale (unlike in Points) # - 2, because the radius is what we need if self._mode == Mode.SELECT: # Check if inside vertex of interaction box or rotation handle box = self._selected_box[Box.WITH_HANDLE] distances = abs(box - coord) # Check if any matching vertices matches = np.all( distances <= self._normalized_vertex_radius, axis=1 ).nonzero() if len(matches[0]) > 0: value = (selected_index[0], matches[0][-1]) elif self._mode in ( [Mode.DIRECT, Mode.VERTEX_INSERT, Mode.VERTEX_REMOVE] ): # Check if inside vertex of shape inds = np.isin(self._data_view.displayed_index, selected_index) vertices = self._data_view.displayed_vertices[inds] distances = abs(vertices - coord) # Check if any matching vertices matches = np.all( distances <= self._normalized_vertex_radius, axis=1 ).nonzero()[0] if len(matches) > 0: index = inds.nonzero()[0][matches[-1]] shape = self._data_view.displayed_index[index] vals, idx = np.unique( self._data_view.displayed_index, return_index=True ) shape_in_list = list(vals).index(shape) value = (shape, index - idx[shape_in_list]) if value is None: # Check if mouse inside shape shape = self._data_view.inside(coord) value = (shape, None) return value def _get_value_3d( self, start_point: np.ndarray, end_point: np.ndarray, dims_displayed: list[int], ) -> tuple[Union[float, int, None], None]: """Get the layer data value along a ray Parameters ---------- start_point : np.ndarray The start position of the ray used to interrogate the data. end_point : np.ndarray The end position of the ray used to interrogate the data. dims_displayed : List[int] The indices of the dimensions currently displayed in the Viewer. Returns ------- value The data value along the supplied ray. vertex : None Index of vertex if any that is at the coordinates. Always returns `None`. """ value, _ = self._get_index_and_intersection( start_point=start_point, end_point=end_point, dims_displayed=dims_displayed, ) return value, None def _get_index_and_intersection( self, start_point: np.ndarray, end_point: np.ndarray, dims_displayed: list[int], ) -> tuple[Union[None, float, int], Union[None, np.ndarray]]: """Get the shape index and intersection point of the first shape (i.e., closest to start_point) along the specified 3D line segment. Note: this method is meant to be used for 3D intersection and returns (None, None) when used in 2D (i.e., len(dims_displayed) is 2). Parameters ---------- start_point : np.ndarray The start position of the ray used to interrogate the data in layer coordinates. end_point : np.ndarray The end position of the ray used to interrogate the data in layer coordinates. dims_displayed : List[int] The indices of the dimensions currently displayed in the Viewer. Returns ------- value Union[None, float, int] The data value along the supplied ray. intersection_point : Union[None, np.ndarray] (n,) array containing the point where the ray intersects the first shape (i.e., the shape most in the foreground). The coordinate is in layer coordinates. """ if len(dims_displayed) != 3: # return None if in 2D mode return None, None if (start_point is None) or (end_point is None): # return None if the ray doesn't intersect the data bounding box return None, None # Get the normal vector of the click plane start_position, ray_direction = nd_line_segment_to_displayed_data_ray( start_point=start_point, end_point=end_point, dims_displayed=dims_displayed, ) value, intersection = self._data_view._inside_3d( start_position, ray_direction ) # add the full nD coords to intersection intersection_point = start_point.copy() intersection_point[dims_displayed] = intersection return value, intersection_point
[docs] def get_index_and_intersection( self, position: np.ndarray, view_direction: np.ndarray, dims_displayed: list[int], ) -> tuple[Union[float, int, None], Union[npt.NDArray, None]]: """Get the shape index and intersection point of the first shape (i.e., closest to start_point) "under" a mouse click. See examples/add_points_on_nD_shapes.py for example usage. Parameters ---------- position : tuple Position in either data or world coordinates. view_direction : Optional[np.ndarray] A unit vector giving the direction of the ray in nD world coordinates. The default value is None. dims_displayed : Optional[List[int]] A list of the dimensions currently being displayed in the viewer. The default value is None. Returns ------- value The data value along the supplied ray. intersection_point : np.ndarray (n,) array containing the point where the ray intersects the first shape (i.e., the shape most in the foreground). The coordinate is in layer coordinates. """ start_point, end_point = self.get_ray_intersections( position, view_direction, dims_displayed ) if (start_point is not None) and (end_point is not None): shape_index, intersection_point = self._get_index_and_intersection( start_point=start_point, end_point=end_point, dims_displayed=dims_displayed, ) else: shape_index = None intersection_point = None return shape_index, intersection_point
[docs] def move_to_front(self) -> None: """Moves selected objects to be displayed in front of all others.""" if len(self.selected_data) == 0: return new_z_index = max(self._data_view._z_index) + 1 for index in self.selected_data: self._data_view.update_z_index(index, new_z_index) self.refresh(extent=False, highlight=False)
[docs] def move_to_back(self) -> None: """Moves selected objects to be displayed behind all others.""" if len(self.selected_data) == 0: return new_z_index = min(self._data_view._z_index) - 1 for index in self.selected_data: self._data_view.update_z_index(index, new_z_index) self.refresh(extent=False, highlight=False)
def _copy_data(self) -> None: """Copy selected shapes to clipboard.""" if len(self.selected_data) > 0: index = list(self.selected_data) self._clipboard = { 'data': [ deepcopy(self._data_view.shapes[i]) for i in self._selected_data ], 'edge_color': deepcopy(self._data_view._edge_color[index]), 'face_color': deepcopy(self._data_view._face_color[index]), 'features': deepcopy(self.features.iloc[index]), 'indices': self._data_slice.point, 'text': self.text._copy(index), } else: self._clipboard = {} def _paste_data(self) -> None: """Paste any shapes from clipboard and then selects them.""" cur_shapes = self.nshapes if len(self._clipboard.keys()) > 0: # Calculate offset based on dimension shifts offset = [ self._data_slice.point[i] - self._clipboard['indices'][i] for i in self._slice_input.not_displayed ] self._feature_table.append(self._clipboard['features']) self.text._paste(**self._clipboard['text']) # Add new shape data for i, s in enumerate(self._clipboard['data']): shape = deepcopy(s) data = copy(shape.data) not_disp = self._slice_input.not_displayed data[:, not_disp] = data[:, not_disp] + np.array(offset) shape.data = data face_color = self._clipboard['face_color'][i] edge_color = self._clipboard['edge_color'][i] self._data_view.add( shape, face_color=face_color, edge_color=edge_color ) self.selected_data = set( range(cur_shapes, cur_shapes + len(self._clipboard['data'])) ) self.move_to_front()
[docs] def to_masks(self, mask_shape=None): """Return an array of binary masks, one for each shape. Parameters ---------- mask_shape : np.ndarray | tuple | None tuple defining shape of mask to be generated. If non specified, takes the max of all the vertices Returns ------- masks : np.ndarray Array where there is one binary mask for each shape """ if mask_shape is None: # See https://github.com/napari/napari/issues/2778 # Point coordinates land on pixel centers. We want to find the # smallest shape that will hold the largest point in the data, # using rounding. mask_shape = np.round(self._extent_data[1]) + 1 mask_shape = np.ceil(mask_shape).astype('int') masks = self._data_view.to_masks(mask_shape=mask_shape) return masks
[docs] def to_labels(self, labels_shape=None): """Return an integer labels image. Parameters ---------- labels_shape : np.ndarray | tuple | None Tuple defining shape of labels image to be generated. If non specified, takes the max of all the vertiecs Returns ------- labels : np.ndarray Integer array where each value is either 0 for background or an integer up to N for points inside the shape at the index value - 1. For overlapping shapes z-ordering will be respected. """ if labels_shape is None: # See https://github.com/napari/napari/issues/2778 # Point coordinates land on pixel centers. We want to find the # smallest shape that will hold the largest point in the data, # using rounding. labels_shape = np.round(self._extent_data[1]) + 1 labels_shape = np.ceil(labels_shape).astype('int') labels = self._data_view.to_labels(labels_shape=labels_shape) return labels