Source code for napari.layers.image.image

"""Image class."""

from __future__ import annotations

import typing
import warnings
from typing import Any, Literal, Union, cast

import numpy as np
from scipy import ndimage as ndi

from napari.layers._data_protocols import LayerDataProtocol
from napari.layers._multiscale_data import MultiScaleData
from napari.layers._scalar_field.scalar_field import ScalarFieldBase
from napari.layers.image._image_constants import (
    ImageProjectionMode,
    ImageRendering,
    Interpolation,
    InterpolationStr,
)
from napari.layers.image._image_utils import guess_rgb
from napari.layers.image._slice import _ImageSliceResponse
from napari.layers.intensity_mixin import IntensityVisualizationMixin
from napari.layers.utils.layer_utils import calc_data_range
from napari.utils._dtype import get_dtype_limits, normalize_dtype
from napari.utils.colormaps import ensure_colormap
from napari.utils.colormaps.colormap_utils import _coerce_contrast_limits
from napari.utils.migrations import rename_argument
from napari.utils.translations import trans

__all__ = ('Image',)


[docs] class Image(IntensityVisualizationMixin, ScalarFieldBase): """Image layer. Parameters ---------- data : array or list of array Image data. Can be N >= 2 dimensional. If the last dimension has length 3 or 4 can be interpreted as RGB or RGBA if rgb is `True`. If a list and arrays are decreasing in shape then the data is treated as a multiscale image. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari `Affine` transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values. attenuation : float Attenuation rate for attenuated maximum intensity projection. axis_labels : tuple of str Dimension names of the layer data. If not provided, axis_labels will be set to (..., 'axis -2', 'axis -1'). blending : str One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {'translucent', 'translucent_no_depth', 'additive', 'minimum', 'opaque'}. cache : bool Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays. colormap : str, napari.utils.Colormap, tuple, dict Colormaps to use for luminance images. If a string, it can be the name of a supported colormap from vispy or matplotlib or the name of a vispy color or a hexadecimal RGB color representation. If a tuple, the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict, the key must be a string to assign as a name to a colormap and the value must be a Colormap. contrast_limits : list (2,) Intensity value limits to be used for determining the minimum and maximum colormap bounds for luminance images. If not passed, they will be calculated as the min and max intensity value of the image. custom_interpolation_kernel_2d : np.ndarray Convolution kernel used with the 'custom' interpolation mode in 2D rendering. depiction : str 3D Depiction mode. Must be one of {'volume', 'plane'}. The default value is 'volume'. experimental_clipping_planes : list of dicts, list of ClippingPlane, or ClippingPlaneList Each dict defines a clipping plane in 3D in data coordinates. Valid dictionary keys are {'position', 'normal', and 'enabled'}. Values on the negative side of the normal are discarded if the plane is enabled. gamma : float Gamma correction for determining colormap linearity; defaults to 1. interpolation2d : str Interpolation mode used by vispy for rendering 2d data. Must be one of our supported modes. (for list of supported modes see Interpolation enum) 'custom' is a special mode for 2D interpolation in which a regular grid of samples is taken from the texture around a position using 'linear' interpolation before being multiplied with a custom interpolation kernel (provided with 'custom_interpolation_kernel_2d'). interpolation3d : str Same as 'interpolation2d' but for 3D rendering. iso_threshold : float Threshold for isosurface. metadata : dict Layer metadata. multiscale : bool Whether the data is a multiscale image or not. Multiscale data is represented by a list of array-like image data. If not specified by the user and if the data is a list of arrays that decrease in shape, then it will be taken to be multiscale. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. name : str Name of the layer. opacity : float Opacity of the layer visual, between 0.0 and 1.0. plane : dict or SlicingPlane Properties defining plane rendering in 3D. Properties are defined in data coordinates. Valid dictionary keys are {'position', 'normal', 'thickness', and 'enabled'}. projection_mode : str How data outside the viewed dimensions, but inside the thick Dims slice will be projected onto the viewed dimensions. Must fit to ImageProjectionMode rendering : str Rendering mode used by vispy. Must be one of our supported modes. rgb : bool, optional Whether the image is RGB or RGBA if rgb. If not specified by user, but the last dimension of the data has length 3 or 4, it will be set as `True`. If `False`, the image is interpreted as a luminance image. rotate : float, 3-tuple of float, or n-D array. If a float, convert into a 2D rotation matrix using that value as an angle. If 3-tuple, convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise, assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with 'np.degrees' if needed. scale : tuple of float Scale factors for the layer. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. translate : tuple of float Translation values for the layer. units : tuple of str or pint.Unit, optional Units of the layer data in world coordinates. If not provided, the default units are assumed to be pixels. visible : bool Whether the layer visual is currently being displayed. Attributes ---------- data : array or list of array Image data. Can be N dimensional. If the last dimension has length 3 or 4 can be interpreted as RGB or RGBA if rgb is `True`. If a list and arrays are decreasing in shape then the data is treated as a multiscale image. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. axis_labels : tuple of str Dimension names of the layer data. metadata : dict Image metadata. rgb : bool Whether the image is rgb RGB or RGBA if rgb. If not specified by user and the last dimension of the data has length 3 or 4 it will be set as `True`. If `False` the image is interpreted as a luminance image. multiscale : bool Whether the data is a multiscale image or not. Multiscale data is represented by a list of array like image data. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. mode : str Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas. In TRANSFORM mode the image can be transformed interactively. colormap : 2-tuple of str, napari.utils.Colormap The first is the name of the current colormap, and the second value is the colormap. Colormaps are used for luminance images, if the image is rgb the colormap is ignored. colormaps : tuple of str Names of the available colormaps. contrast_limits : list (2,) of float Color limits to be used for determining the colormap bounds for luminance images. If the image is rgb the contrast_limits is ignored. contrast_limits_range : list (2,) of float Range for the color limits for luminance images. If the image is rgb the contrast_limits_range is ignored. gamma : float Gamma correction for determining colormap linearity. interpolation2d : str Interpolation mode used by vispy. Must be one of our supported modes. 'custom' is a special mode for 2D interpolation in which a regular grid of samples are taken from the texture around a position using 'linear' interpolation before being multiplied with a custom interpolation kernel (provided with 'custom_interpolation_kernel_2d'). interpolation3d : str Same as 'interpolation2d' but for 3D rendering. rendering : str Rendering mode used by vispy. Must be one of our supported modes. depiction : str 3D Depiction mode used by vispy. Must be one of our supported modes. iso_threshold : float Threshold for isosurface. attenuation : float Attenuation rate for attenuated maximum intensity projection. plane : SlicingPlane or dict Properties defining plane rendering in 3D. Valid dictionary keys are {'position', 'normal', 'thickness'}. experimental_clipping_planes : ClippingPlaneList Clipping planes defined in data coordinates, used to clip the volume. custom_interpolation_kernel_2d : np.ndarray Convolution kernel used with the 'custom' interpolation mode in 2D rendering. units: tuple of pint.Unit Units of the layer data in world coordinates. Notes ----- _data_view : array (N, M), (N, M, 3), or (N, M, 4) Image data for the currently viewed slice. Must be 2D image data, but can be multidimensional for RGB or RGBA images if multidimensional is `True`. """ _projectionclass = ImageProjectionMode @rename_argument( from_name='interpolation', to_name='interpolation2d', version='0.6.0', since_version='0.4.17', ) def __init__( self, data, *, affine=None, attenuation=0.05, axis_labels=None, blending='translucent', cache=True, colormap='gray', contrast_limits=None, custom_interpolation_kernel_2d=None, depiction='volume', experimental_clipping_planes=None, gamma=1.0, interpolation2d='nearest', interpolation3d='linear', iso_threshold=None, metadata=None, multiscale=None, name=None, opacity=1.0, plane=None, projection_mode='none', rendering='mip', rgb=None, rotate=None, scale=None, shear=None, translate=None, units=None, visible=True, ): # Determine if rgb data_shape = data.shape if hasattr(data, 'shape') else data[0].shape if rgb and not guess_rgb(data_shape, min_side_len=0): raise ValueError( trans._( "'rgb' was set to True but data does not have suitable dimensions." ) ) if rgb is None: rgb = guess_rgb(data_shape) self.rgb = rgb super().__init__( data, affine=affine, axis_labels=axis_labels, blending=blending, cache=cache, custom_interpolation_kernel_2d=custom_interpolation_kernel_2d, depiction=depiction, experimental_clipping_planes=experimental_clipping_planes, metadata=metadata, multiscale=multiscale, name=name, ndim=len(data_shape) - 1 if rgb else len(data_shape), opacity=opacity, plane=plane, projection_mode=projection_mode, rendering=rendering, rotate=rotate, scale=scale, shear=shear, translate=translate, units=units, visible=visible, ) self.rgb = rgb self._colormap = ensure_colormap(colormap) self._gamma = gamma self._interpolation2d = Interpolation.NEAREST self._interpolation3d = Interpolation.NEAREST self.interpolation2d = interpolation2d self.interpolation3d = interpolation3d self._attenuation = attenuation # Set contrast limits, colormaps and plane parameters if contrast_limits is None: if not isinstance(data, np.ndarray): dtype = normalize_dtype(getattr(data, 'dtype', None)) if np.issubdtype(dtype, np.integer): self.contrast_limits_range = get_dtype_limits(dtype) else: self.contrast_limits_range = (0, 1) self._should_calc_clims = dtype != np.uint8 else: self.contrast_limits_range = self._calc_data_range() else: self.contrast_limits_range = contrast_limits self._contrast_limits: tuple[float, float] = self.contrast_limits_range self.contrast_limits = self._contrast_limits if iso_threshold is None: cmin, cmax = self.contrast_limits_range self._iso_threshold = cmin + (cmax - cmin) / 2 else: self._iso_threshold = iso_threshold @property def rendering(self): """Return current rendering mode. Selects a preset rendering mode in vispy that determines how volume is displayed. Options include: * ``translucent``: voxel colors are blended along the view ray until the result is opaque. * ``mip``: maximum intensity projection. Cast a ray and display the maximum value that was encountered. * ``minip``: minimum intensity projection. Cast a ray and display the minimum value that was encountered. * ``attenuated_mip``: attenuated maximum intensity projection. Cast a ray and attenuate values based on integral of encountered values, display the maximum value that was encountered after attenuation. This will make nearer objects appear more prominent. * ``additive``: voxel colors are added along the view ray until the result is saturated. * ``iso``: isosurface. Cast a ray until a certain threshold is encountered. At that location, lighning calculations are performed to give the visual appearance of a surface. * ``average``: average intensity projection. Cast a ray and display the average of values that were encountered. Returns ------- str The current rendering mode """ return str(self._rendering) @rendering.setter def rendering(self, rendering): self._rendering = ImageRendering(rendering) self.events.rendering() def _get_state(self) -> dict[str, Any]: """Get dictionary of layer state. Returns ------- state : dict of str to Any Dictionary of layer state. """ state = self._get_base_state() state.update( { 'rgb': self.rgb, 'multiscale': self.multiscale, 'colormap': self.colormap.dict(), 'contrast_limits': self.contrast_limits, 'interpolation2d': self.interpolation2d, 'interpolation3d': self.interpolation3d, 'rendering': self.rendering, 'depiction': self.depiction, 'plane': self.plane.dict(), 'iso_threshold': self.iso_threshold, 'attenuation': self.attenuation, 'gamma': self.gamma, 'data': self.data, 'custom_interpolation_kernel_2d': self.custom_interpolation_kernel_2d, } ) return state def _update_slice_response(self, response: _ImageSliceResponse) -> None: if self._keep_auto_contrast: data = response.image.raw input_data = data[-1] if self.multiscale else data self.contrast_limits = calc_data_range( typing.cast(LayerDataProtocol, input_data), rgb=self.rgb ) super()._update_slice_response(response) # Maybe reset the contrast limits based on the new slice. if self._should_calc_clims: self.reset_contrast_limits_range() self.reset_contrast_limits() self._should_calc_clims = False elif self._keep_auto_contrast: self.reset_contrast_limits() @property def attenuation(self) -> float: """float: attenuation rate for attenuated_mip rendering.""" return self._attenuation @attenuation.setter def attenuation(self, value: float) -> None: self._attenuation = value self._update_thumbnail() self.events.attenuation() @property def data(self) -> Union[LayerDataProtocol, MultiScaleData]: """Data, possibly in multiscale wrapper. Obeys LayerDataProtocol.""" return self._data @data.setter def data(self, data: Union[LayerDataProtocol, MultiScaleData]) -> None: self._data_raw = data # note, we don't support changing multiscale in an Image instance self._data = MultiScaleData(data) if self.multiscale else data # type: ignore self._update_dims() if self._keep_auto_contrast: self.reset_contrast_limits() self.events.data(value=self.data) self._reset_editable() @property def interpolation(self): """Return current interpolation mode. Selects a preset interpolation mode in vispy that determines how volume is displayed. Makes use of the two Texture2D interpolation methods and the available interpolation methods defined in vispy/gloo/glsl/misc/spatial_filters.frag Options include: 'bessel', 'cubic', 'linear', 'blackman', 'catrom', 'gaussian', 'hamming', 'hanning', 'hermite', 'kaiser', 'lanczos', 'mitchell', 'nearest', 'spline16', 'spline36' Returns ------- str The current interpolation mode """ warnings.warn( trans._( 'Interpolation attribute is deprecated since 0.4.17. Please use interpolation2d or interpolation3d', ), category=DeprecationWarning, stacklevel=2, ) return str( self._interpolation2d if self._slice_input.ndisplay == 2 else self._interpolation3d ) @interpolation.setter def interpolation(self, interpolation): """Set current interpolation mode.""" warnings.warn( trans._( 'Interpolation setting is deprecated since 0.4.17. Please use interpolation2d or interpolation3d', ), category=DeprecationWarning, stacklevel=2, ) if self._slice_input.ndisplay == 3: self.interpolation3d = interpolation else: if interpolation == 'bilinear': interpolation = 'linear' warnings.warn( trans._( "'bilinear' is invalid for interpolation2d (introduced in napari 0.4.17). " "Please use 'linear' instead, and please set directly the 'interpolation2d' attribute'.", ), category=DeprecationWarning, stacklevel=2, ) self.interpolation2d = interpolation @property def interpolation2d(self) -> InterpolationStr: return cast(InterpolationStr, str(self._interpolation2d)) @interpolation2d.setter def interpolation2d( self, value: Union[InterpolationStr, Interpolation] ) -> None: if value == 'bilinear': raise ValueError( trans._( "'bilinear' interpolation is not valid for interpolation2d. Did you mean 'linear' instead ?", ), ) if value == 'bicubic': value = 'cubic' warnings.warn( trans._("'bicubic' is deprecated. Please use 'cubic' instead"), category=DeprecationWarning, stacklevel=2, ) self._interpolation2d = Interpolation(value) self.events.interpolation2d(value=self._interpolation2d) self.events.interpolation(value=self._interpolation2d) @property def interpolation3d(self) -> InterpolationStr: return cast(InterpolationStr, str(self._interpolation3d)) @interpolation3d.setter def interpolation3d( self, value: Union[InterpolationStr, Interpolation] ) -> None: if value == 'custom': raise NotImplementedError( 'custom interpolation is not implemented yet for 3D rendering' ) if value == 'bicubic': value = 'cubic' warnings.warn( trans._("'bicubic' is deprecated. Please use 'cubic' instead"), category=DeprecationWarning, stacklevel=2, ) self._interpolation3d = Interpolation(value) self.events.interpolation3d(value=self._interpolation3d) self.events.interpolation(value=self._interpolation3d) @property def iso_threshold(self) -> float: """float: threshold for isosurface.""" return self._iso_threshold @iso_threshold.setter def iso_threshold(self, value: float) -> None: self._iso_threshold = value self._update_thumbnail() self.events.iso_threshold() def _get_level_shapes(self): shapes = super()._get_level_shapes() if self.rgb: shapes = [s[:-1] for s in shapes] return shapes def _update_thumbnail(self): """Update thumbnail with current image data and colormap.""" # don't bother updating thumbnail if we don't have any data # this also avoids possible dtype mismatch issues below # for example np.clip may raise an OverflowError (in numpy 2.0) if self._slice.empty: return image = self._slice.thumbnail.raw if self._slice_input.ndisplay == 3 and self.ndim > 2: image = np.max(image, axis=0) # float16 not supported by ndi.zoom dtype = np.dtype(image.dtype) if dtype in [np.dtype(np.float16)]: image = image.astype(np.float32) raw_zoom_factor = np.divide( self._thumbnail_shape[:2], image.shape[:2] ).min() new_shape = np.clip( raw_zoom_factor * np.array(image.shape[:2]), 1, # smallest side should be 1 pixel wide self._thumbnail_shape[:2], ) zoom_factor = tuple(new_shape / image.shape[:2]) if self.rgb: downsampled = ndi.zoom( image, zoom_factor + (1,), prefilter=False, order=0 ) if image.shape[2] == 4: # image is RGBA colormapped = np.copy(downsampled) colormapped[..., 3] = downsampled[..., 3] * self.opacity if downsampled.dtype == np.uint8: colormapped = colormapped.astype(np.uint8) else: # image is RGB if downsampled.dtype == np.uint8: alpha = np.full( downsampled.shape[:2] + (1,), int(255 * self.opacity), dtype=np.uint8, ) else: alpha = np.full(downsampled.shape[:2] + (1,), self.opacity) colormapped = np.concatenate([downsampled, alpha], axis=2) else: downsampled = ndi.zoom( image, zoom_factor, prefilter=False, order=0 ) low, high = self.contrast_limits if np.issubdtype(downsampled.dtype, np.integer): low = max(low, np.iinfo(downsampled.dtype).min) high = min(high, np.iinfo(downsampled.dtype).max) downsampled = np.clip(downsampled, low, high) color_range = high - low if color_range != 0: downsampled = (downsampled - low) / color_range downsampled = downsampled**self.gamma color_array = self.colormap.map(downsampled.ravel()) colormapped = color_array.reshape((*downsampled.shape, 4)) colormapped[..., 3] *= self.opacity self.thumbnail = colormapped def _calc_data_range( self, mode: Literal['data', 'slice'] = 'data' ) -> tuple[float, float]: """ Calculate the range of the data values in the currently viewed slice or full data array """ if mode == 'data': input_data = self.data[-1] if self.multiscale else self.data elif mode == 'slice': data = self._slice.image.raw # ugh input_data = data[-1] if self.multiscale else data else: raise ValueError( trans._( "mode must be either 'data' or 'slice', got {mode!r}", deferred=True, mode=mode, ) ) return calc_data_range( cast(LayerDataProtocol, input_data), rgb=self.rgb ) def _raw_to_displayed(self, raw: np.ndarray) -> np.ndarray: """Determine displayed image from raw image. This function checks if current contrast_limits are within the range supported by vispy. If yes, it returns the raw image. If not, it rescales the raw image to fit within the range supported by vispy. Parameters ---------- raw : array Raw array. Returns ------- image : array Displayed array. """ fixed_contrast_info = _coerce_contrast_limits(self.contrast_limits) if np.allclose( fixed_contrast_info.contrast_limits, self.contrast_limits ): return raw return fixed_contrast_info.coerce_data(raw) @IntensityVisualizationMixin.contrast_limits.setter # type: ignore [attr-defined] def contrast_limits(self, contrast_limits): IntensityVisualizationMixin.contrast_limits.fset(self, contrast_limits) if not np.allclose( _coerce_contrast_limits(self.contrast_limits).contrast_limits, self.contrast_limits, ): prev = self._keep_auto_contrast self._keep_auto_contrast = False try: self.refresh(highlight=False, extent=False) finally: self._keep_auto_contrast = prev def _calculate_value_from_ray(self, values): # translucent is special: just return the first value, no matter what if self.rendering == ImageRendering.TRANSLUCENT: return np.ravel(values)[0] # iso is weird too: just return None always if self.rendering == ImageRendering.ISO: return None # if the whole ray is NaN, we should see nothing, so return None # this check saves us some warnings later as well, so better do it now if np.all(np.isnan(values)): return None # "summary" renderings; they do not represent a specific pixel, so we just # return the summary value. We should probably differentiate these somehow. # these are also probably not the same as how the gpu does it... if self.rendering == ImageRendering.AVERAGE: return np.nanmean(values) if self.rendering == ImageRendering.ADDITIVE: # TODO: this is "broken" cause same pixel gets multisampled... # but it looks like it's also overdoing it in vispy vis too? # I don't know if there's a way to *not* do it... return np.nansum(values) # all the following cases are returning the *actual* value of the image at the # "selected" pixel, whose position changes depending on the rendering mode. if self.rendering == ImageRendering.MIP: return np.nanmax(values) if self.rendering == ImageRendering.MINIP: return np.nanmin(values) if self.rendering == ImageRendering.ATTENUATED_MIP: # normalize values so attenuation applies from 0 to 1 values_attenuated = ( values - self.contrast_limits[0] ) / self.contrast_limits[1] # approx, step size is actually calculated with int(lenght(ray) * 2) step_size = 0.5 sumval = ( step_size * np.cumsum(np.clip(values_attenuated, 0, 1)) * len(values_attenuated) ) scale = np.exp(-self.attenuation * (sumval - 1)) return values[np.nanargmin(values_attenuated * scale)] raise RuntimeError( # pragma: no cover f'ray value calculation not implemented for {self.rendering}' )