import warnings
from copy import copy
from typing import Dict, List, Tuple, Union
import numpy as np
import pandas as pd
from ...utils.colormaps import Colormap, ValidColormapArg
from ...utils.events import Event
from ...utils.events.custom_types import Array
from ...utils.translations import trans
from ..base import Layer
from ..utils._color_manager_constants import ColorMode
from ..utils.color_manager import ColorManager
from ..utils.color_transformations import ColorType
from ..utils.layer_utils import _FeatureTable
from ._vector_utils import fix_data_vectors, generate_vector_meshes
[docs]class Vectors(Layer):
"""
Vectors layer renders lines onto the canvas.
Parameters
----------
data : (N, 2, D) or (N1, N2, ..., ND, D) array
An (N, 2, D) array is interpreted as "coordinate-like" data and a
list of N vectors with start point and projections of the vector in
D dimensions. An (N1, N2, ..., ND, D) array is interpreted as
"image-like" data where there is a length D vector of the
projections at each pixel.
ndim : int
Number of dimensions for vectors. When data is not None, ndim must be D.
An empty vectors layer can be instantiated with arbitrary ndim.
features : dict[str, array-like] or DataFrame
Features table where each row corresponds to a vector and each column
is a feature.
properties : dict {str: array (N,)}, DataFrame
Properties for each vector. Each property should be an array of length N,
where N is the number of vectors.
property_choices : dict {str: array (N,)}
possible values for each property.
edge_width : float
Width for all vectors in pixels.
length : float
Multiplicative factor on projections for length of all vectors.
edge_color : str
Color of all of the vectors.
edge_color_cycle : np.ndarray, list
Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a
categorical attribute is used color the vectors.
edge_colormap : str, napari.utils.Colormap
Colormap to set vector color if a continuous attribute is used to set edge_color.
edge_contrast_limits : None, (float, float)
clims for mapping the property to a color map. These are the min and max value
of the specified property that are mapped to 0 and 1, respectively.
The default value is None. If set the none, the clims will be set to
(property.min(), property.max())
out_of_slice_display : bool
If True, renders vectors not just in central plane but also slightly out of slice
according to specified point marker size.
name : str
Name of the layer.
metadata : dict
Layer metadata.
scale : tuple of float
Scale factors for the layer.
translate : tuple of float
Translation values for the layer.
rotate : float, 3-tuple of float, or n-D array.
If a float convert into a 2D rotation matrix using that value as an
angle. If 3-tuple convert into a 3D rotation matrix, using a yaw,
pitch, roll convention. Otherwise assume an nD rotation. Angles are
assumed to be in degrees. They can be converted from radians with
np.degrees if needed.
shear : 1-D array or n-D array
Either a vector of upper triangular values, or an nD shear matrix with
ones along the main diagonal.
affine : n-D array or napari.utils.transforms.Affine
(N+1, N+1) affine transformation matrix in homogeneous coordinates.
The first (N, N) entries correspond to a linear transform and
the final column is a length N translation vector and a 1 or a napari
`Affine` transform object. Applied as an extra transform on top of the
provided scale, rotate, and shear values.
opacity : float
Opacity of the layer visual, between 0.0 and 1.0.
blending : str
One of a list of preset blending modes that determines how RGB and
alpha values of the layer visual get mixed. Allowed values are
{'opaque', 'translucent', and 'additive'}.
visible : bool
Whether the layer visual is currently being displayed.
cache : bool
Whether slices of out-of-core datasets should be cached upon retrieval.
Currently, this only applies to dask arrays.
Attributes
----------
data : (N, 2, D) array
The start point and projections of N vectors in D dimensions.
features : Dataframe-like
Features table where each row corresponds to a vector and each column
is a feature.
feature_defaults : DataFrame-like
Stores the default value of each feature in a table with one row.
properties : dict {str: array (N,)}, DataFrame
Properties for each vector. Each property should be an array of length N,
where N is the number of vectors.
edge_width : float
Width for all vectors in pixels.
length : float
Multiplicative factor on projections for length of all vectors.
edge_color : str
Color of all of the vectors.
edge_color_cycle : np.ndarray, list
Cycle of colors (provided as string name, RGB, or RGBA) to map to edge_color if a
categorical attribute is used color the vectors.
edge_colormap : str, napari.utils.Colormap
Colormap to set vector color if a continuous attribute is used to set edge_color.
edge_contrast_limits : None, (float, float)
clims for mapping the property to a color map. These are the min and max value
of the specified property that are mapped to 0 and 1, respectively.
The default value is None. If set the none, the clims will be set to
(property.min(), property.max())
out_of_slice_display : bool
If True, renders vectors not just in central plane but also slightly out of slice
according to specified point marker size.
Notes
-----
_view_data : (M, 2, 2) array
The start point and projections of N vectors in 2D for vectors whose
start point is in the currently viewed slice.
_view_face_color : (M, 4) np.ndarray
colors for the M in view vectors
_view_indices : (1, M) array
indices for the M in view vectors
_view_vertices : (4M, 2) or (8M, 2) np.ndarray
the corner points for the M in view faces. Shape is (4M, 2) for 2D and (8M, 2) for 3D.
_view_faces : (2M, 3) or (4M, 3) np.ndarray
indices of the _mesh_vertices that form the faces of the M in view vectors.
Shape is (2M, 2) for 2D and (4M, 2) for 3D.
_view_alphas : (M,) or float
relative opacity for the M in view vectors
_property_choices : dict {str: array (N,)}
Possible values for the properties in Vectors.properties.
_mesh_vertices : (4N, 2) array
The four corner points for the mesh representation of each vector as as
rectangle in the slice that it starts in.
_mesh_triangles : (2N, 3) array
The integer indices of the `_mesh_vertices` that form the two triangles
for the mesh representation of the vectors.
_max_vectors_thumbnail : int
The maximum number of vectors that will ever be used to render the
thumbnail. If more vectors are present then they are randomly
subsampled.
"""
# The max number of vectors that will ever be used to render the thumbnail
# If more vectors are present then they are randomly subsampled
_max_vectors_thumbnail = 1024
def __init__(
self,
data=None,
*,
ndim=None,
features=None,
properties=None,
property_choices=None,
edge_width=1,
edge_color='red',
edge_color_cycle=None,
edge_colormap='viridis',
edge_contrast_limits=None,
out_of_slice_display=False,
length=1,
name=None,
metadata=None,
scale=None,
translate=None,
rotate=None,
shear=None,
affine=None,
opacity=0.7,
blending='translucent',
visible=True,
cache=True,
experimental_clipping_planes=None,
):
if ndim is None and scale is not None:
ndim = len(scale)
data, ndim = fix_data_vectors(data, ndim)
super().__init__(
data,
ndim,
name=name,
metadata=metadata,
scale=scale,
translate=translate,
rotate=rotate,
shear=shear,
affine=affine,
opacity=opacity,
blending=blending,
visible=visible,
cache=cache,
experimental_clipping_planes=experimental_clipping_planes,
)
# events for non-napari calculations
self.events.add(
length=Event,
edge_width=Event,
edge_color=Event,
edge_color_mode=Event,
properties=Event,
out_of_slice_display=Event,
features=Event,
feature_defaults=Event,
)
# Save the vector style params
self._edge_width = edge_width
self._out_of_slice_display = out_of_slice_display
self._length = float(length)
self._data = data
vertices, triangles = generate_vector_meshes(
self._data[:, :, list(self._dims_displayed)],
self.edge_width,
self.length,
)
self._mesh_vertices = vertices
self._mesh_triangles = triangles
self._displayed_stored = copy(self._dims_displayed)
self._feature_table = _FeatureTable.from_layer(
features=features,
properties=properties,
property_choices=property_choices,
num_data=len(self.data),
)
self._edge = ColorManager._from_layer_kwargs(
n_colors=len(self.data),
colors=edge_color,
continuous_colormap=edge_colormap,
contrast_limits=edge_contrast_limits,
categorical_colormap=edge_color_cycle,
properties=self.properties
if self._data.size > 0
else self.property_choices,
)
# Data containing vectors in the currently viewed slice
self._view_data = np.empty((0, 2, 2))
self._displayed_stored = []
self._view_vertices = []
self._view_faces = []
self._view_indices = []
self._view_alphas = []
# now that everything is set up, make the layer visible (if set to visible)
self._update_dims()
self.visible = visible
@property
def data(self) -> np.ndarray:
"""(N, 2, D) array: start point and projections of vectors."""
return self._data
@data.setter
def data(self, vectors: np.ndarray):
previous_n_vectors = len(self.data)
self._data, _ = fix_data_vectors(vectors, self.ndim)
n_vectors = len(self.data)
vertices, triangles = generate_vector_meshes(
self._data[:, :, list(self._dims_displayed)],
self.edge_width,
self.length,
)
self._mesh_vertices = vertices
self._mesh_triangles = triangles
self._displayed_stored = copy(self._dims_displayed)
# Adjust the props/color arrays when the number of vectors has changed
with self.events.blocker_all():
with self._edge.events.blocker_all():
self._feature_table.resize(n_vectors)
if n_vectors < previous_n_vectors:
# If there are now fewer points, remove the size and colors of the
# extra ones
if len(self._edge.colors) > n_vectors:
self._edge._remove(
np.arange(n_vectors, len(self._edge.colors))
)
elif n_vectors > previous_n_vectors:
# If there are now more points, add the size and colors of the
# new ones
adding = n_vectors - previous_n_vectors
self._edge._add(n_colors=adding)
self._update_dims()
self.events.data(value=self.data)
self._set_editable()
@property
def features(self):
"""Dataframe-like features table.
It is an implementation detail that this is a `pandas.DataFrame`. In the future,
we will target the currently-in-development Data API dataframe protocol [1].
This will enable us to use alternate libraries such as xarray or cuDF for
additional features without breaking existing usage of this.
If you need to specifically rely on the pandas API, please coerce this to a
`pandas.DataFrame` using `features_to_pandas_dataframe`.
References
----------
.. [1]: https://data-apis.org/dataframe-protocol/latest/API.html
"""
return self._feature_table.values
@features.setter
def features(
self,
features: Union[Dict[str, np.ndarray], pd.DataFrame],
) -> None:
self._feature_table.set_values(features, num_data=len(self.data))
if self._edge.color_properties is not None:
if self._edge.color_properties.name not in self.features:
self._edge.color_mode = ColorMode.DIRECT
self._edge.color_properties = None
warnings.warn(
trans._(
'property used for edge_color dropped',
deferred=True,
),
RuntimeWarning,
)
else:
edge_color_name = self._edge.color_properties.name
property_values = self.features[edge_color_name].to_numpy()
self._edge.color_properties = {
'name': edge_color_name,
'values': property_values,
'current_value': self.feature_defaults[edge_color_name][0],
}
self.events.properties()
self.events.features()
@property
def properties(self) -> Dict[str, np.ndarray]:
"""dict {str: array (N,)}, DataFrame: Annotations for each point"""
return self._feature_table.properties()
@properties.setter
def properties(self, properties: Dict[str, Array]):
self.features = properties
@property
def feature_defaults(self):
"""Dataframe-like with one row of feature default values.
See `features` for more details on the type of this property.
"""
return self._feature_table.defaults
@property
def property_choices(self) -> Dict[str, np.ndarray]:
return self._feature_table.choices()
def _get_state(self):
"""Get dictionary of layer state.
Returns
-------
state : dict
Dictionary of layer state.
"""
state = self._get_base_state()
state.update(
{
'length': self.length,
'edge_width': self.edge_width,
'edge_color': self.edge_color,
'edge_color_cycle': self.edge_color_cycle,
'edge_colormap': self.edge_colormap.name,
'edge_contrast_limits': self.edge_contrast_limits,
'data': self.data,
'properties': self.properties,
'property_choices': self.property_choices,
'ndim': self.ndim,
'features': self.features,
'out_of_slice_display': self.out_of_slice_display,
}
)
return state
def _get_ndim(self) -> int:
"""Determine number of dimensions of the layer."""
return self.data.shape[2]
@property
def _extent_data(self) -> np.ndarray:
"""Extent of layer in data coordinates.
Returns
-------
extent_data : array, shape (2, D)
"""
if len(self.data) == 0:
extrema = np.full((2, self.ndim), np.nan)
else:
# Convert from projections to endpoints using the current length
data = copy(self.data)
data[:, 1, :] = data[:, 0, :] + self.length * data[:, 1, :]
maxs = np.max(data, axis=(0, 1))
mins = np.min(data, axis=(0, 1))
extrema = np.vstack([mins, maxs])
return extrema
@property
def out_of_slice_display(self) -> bool:
"""bool: renders vectors slightly out of slice."""
return self._out_of_slice_display
@out_of_slice_display.setter
def out_of_slice_display(self, out_of_slice_display: bool) -> None:
self._out_of_slice_display = out_of_slice_display
self.events.out_of_slice_display()
self.refresh()
@property
def edge_width(self) -> Union[int, float]:
"""float: Width for all vectors in pixels."""
return self._edge_width
@edge_width.setter
def edge_width(self, edge_width: Union[int, float]):
self._edge_width = edge_width
vertices, triangles = generate_vector_meshes(
self.data[:, :, list(self._dims_displayed)],
self._edge_width,
self.length,
)
self._mesh_vertices = vertices
self._mesh_triangles = triangles
self._displayed_stored = copy(self._dims_displayed)
self.events.edge_width()
self.refresh()
@property
def length(self) -> Union[int, float]:
"""float: Multiplicative factor for length of all vectors."""
return self._length
@length.setter
def length(self, length: Union[int, float]):
self._length = float(length)
vertices, triangles = generate_vector_meshes(
self.data[:, :, list(self._dims_displayed)],
self.edge_width,
self._length,
)
self._mesh_vertices = vertices
self._mesh_triangles = triangles
self._displayed_stored = copy(self._dims_displayed)
self.events.length()
self.refresh()
@property
def edge_color(self) -> np.ndarray:
"""(1 x 4) np.ndarray: Array of RGBA edge colors (applied to all vectors)"""
return self._edge.colors
@edge_color.setter
def edge_color(self, edge_color: ColorType):
self._edge._set_color(
color=edge_color,
n_colors=len(self.data),
properties=self.properties,
current_properties=self._feature_table.currents(),
)
self.events.edge_color()
[docs] def refresh_colors(self, update_color_mapping: bool = False):
"""Calculate and update edge colors if using a cycle or color map
Parameters
----------
update_color_mapping : bool
If set to True, the function will recalculate the color cycle map
or colormap (whichever is being used). If set to False, the function
will use the current color cycle map or color map. For example, if you
are adding/modifying vectors and want them to be colored with the same
mapping as the other vectors (i.e., the new vectors shouldn't affect
the color cycle map or colormap), set update_color_mapping=False.
Default value is False.
"""
self._edge._refresh_colors(self.properties, update_color_mapping)
@property
def edge_color_mode(self) -> ColorMode:
"""str: Edge color setting mode
DIRECT (default mode) allows each vector to be set arbitrarily
CYCLE allows the color to be set via a color cycle over an attribute
COLORMAP allows color to be set via a color map over an attribute
"""
return self._edge.color_mode
@edge_color_mode.setter
def edge_color_mode(self, edge_color_mode: Union[str, ColorMode]):
edge_color_mode = ColorMode(edge_color_mode)
if edge_color_mode == ColorMode.DIRECT:
self._edge_color_mode = edge_color_mode
elif edge_color_mode in (ColorMode.CYCLE, ColorMode.COLORMAP):
if self._edge.color_properties is not None:
color_property = self._edge.color_properties.name
else:
color_property = ''
if color_property == '':
if self.properties:
color_property = next(iter(self.properties))
self._edge.color_properties = {
'name': color_property,
'values': self.features[color_property].to_numpy(),
'current_value': self.feature_defaults[color_property][
0
],
}
warnings.warn(
trans._(
'edge_color property was not set, setting to: {color_property}',
deferred=True,
color_property=color_property,
),
RuntimeWarning,
)
else:
raise ValueError(
trans._(
'There must be a valid Points.properties to use {edge_color_mode}',
deferred=True,
edge_color_mode=edge_color_mode,
)
)
# ColorMode.COLORMAP can only be applied to numeric properties
if (edge_color_mode == ColorMode.COLORMAP) and not issubclass(
self.properties[color_property].dtype.type,
np.number,
):
raise TypeError(
trans._(
'selected property must be numeric to use ColorMode.COLORMAP',
deferred=True,
)
)
self._edge.color_mode = edge_color_mode
self.events.edge_color_mode()
@property
def edge_color_cycle(self) -> np.ndarray:
"""list, np.ndarray : Color cycle for edge_color.
Can be a list of colors defined by name, RGB or RGBA
"""
return self._edge.categorical_colormap.fallback_color.values
@edge_color_cycle.setter
def edge_color_cycle(self, edge_color_cycle: Union[list, np.ndarray]):
self._edge.categorical_colormap = edge_color_cycle
@property
def edge_colormap(self) -> Tuple[str, Colormap]:
"""Return the colormap to be applied to a property to get the edge color.
Returns
-------
colormap : napari.utils.Colormap
The Colormap object.
"""
return self._edge.continuous_colormap
@edge_colormap.setter
def edge_colormap(self, colormap: ValidColormapArg):
self._edge.continuous_colormap = colormap
@property
def edge_contrast_limits(self) -> Tuple[float, float]:
"""None, (float, float): contrast limits for mapping
the edge_color colormap property to 0 and 1
"""
return self._edge.contrast_limits
@edge_contrast_limits.setter
def edge_contrast_limits(
self, contrast_limits: Union[None, Tuple[float, float]]
):
self._edge.contrast_limits = contrast_limits
@property
def _view_face_color(self) -> np.ndarray:
"""(Mx4) np.ndarray : colors for the M in view vectors"""
face_color = self.edge_color[self._view_indices]
face_color[:, -1] *= self._view_alphas
face_color = np.repeat(face_color, 2, axis=0)
if self._ndisplay == 3 and self.ndim > 2:
face_color = np.vstack([face_color, face_color])
return face_color
def _slice_data(
self, dims_indices
) -> Tuple[List[int], Union[float, np.ndarray]]:
"""Determines the slice of vectors given the indices.
Parameters
----------
dims_indices : sequence of int or slice
Indices to slice with.
Returns
-------
slice_indices : list
Indices of vectors in the currently viewed slice.
alpha : float, (N, ) array
The computed, relative opacity of vectors in the current slice.
If `out_of_slice_display` is mode is off, this is always 1.
Otherwise, vectors originating in the current slice are assigned a value of 1,
while vectors passing through the current slice are assigned progressively lower
values, based on how far from the current slice they originate.
"""
not_disp = list(self._dims_not_displayed)
indices = np.array(dims_indices)
if len(self.data) > 0:
data = self.data[:, 0, not_disp]
distances = abs(data - indices[not_disp])
if self.out_of_slice_display is True:
projected_lengths = abs(
self.data[:, 1, not_disp] * self.length
)
matches = np.all(distances <= projected_lengths, axis=1)
alpha_match = projected_lengths[matches]
alpha_match[alpha_match == 0] = 1
alpha_per_dim = (
alpha_match - distances[matches]
) / alpha_match
alpha_per_dim[alpha_match == 0] = 1
alpha = np.prod(alpha_per_dim, axis=1).astype(float)
else:
matches = np.all(distances <= 0.5, axis=1)
alpha = 1.0
slice_indices = np.where(matches)[0].astype(int)
return slice_indices, alpha
else:
return [], np.empty(0)
def _set_view_slice(self):
"""Sets the view given the indices to slice with."""
indices, alphas = self._slice_data(self._slice_indices)
if not self._dims_displayed == self._displayed_stored:
vertices, triangles = generate_vector_meshes(
self.data[:, :, list(self._dims_displayed)],
self.edge_width,
self.length,
)
self._mesh_vertices = vertices
self._mesh_triangles = triangles
self._displayed_stored = copy(self._dims_displayed)
vertices = self._mesh_vertices
disp = list(self._dims_displayed)
if len(self.data) == 0:
faces = []
self._view_data = np.empty((0, 2, 2))
self._view_indices = []
elif self.ndim > 2:
indices, alphas = self._slice_data(self._slice_indices)
self._view_indices = indices
self._view_alphas = alphas
self._view_data = self.data[np.ix_(indices, [0, 1], disp)]
if len(indices) == 0:
faces = []
else:
keep_inds = np.repeat(2 * indices, 2)
keep_inds[1::2] = keep_inds[1::2] + 1
if self._ndisplay == 3:
keep_inds = np.concatenate(
[
keep_inds,
len(self._mesh_triangles) // 2 + keep_inds,
],
axis=0,
)
faces = self._mesh_triangles[keep_inds]
else:
faces = self._mesh_triangles
self._view_data = self.data[:, :, disp]
self._view_indices = np.arange(self.data.shape[0])
self._view_alphas = 1.0
if len(faces) == 0:
self._view_vertices = []
self._view_faces = []
else:
self._view_vertices = vertices
self._view_faces = faces
def _update_thumbnail(self):
"""Update thumbnail with current vectors and colors."""
# calculate min vals for the vertices and pad with 0.5
# the offset is needed to ensure that the top left corner of the
# vectors corresponds to the top left corner of the thumbnail
de = self._extent_data
offset = (np.array([de[0, d] for d in self._dims_displayed]) + 0.5)[
-2:
]
# calculate range of values for the vertices and pad with 1
# padding ensures the entire vector can be represented in the thumbnail
# without getting clipped
shape = np.ceil(
[de[1, d] - de[0, d] + 1 for d in self._dims_displayed]
).astype(int)[-2:]
zoom_factor = np.divide(self._thumbnail_shape[:2], shape).min()
# vectors = copy(self._data_view[:, :, -2:])
if self._view_data.shape[0] > self._max_vectors_thumbnail:
thumbnail_indices = np.random.randint(
0, self._view_data.shape[0], self._max_vectors_thumbnail
)
vectors = copy(self._view_data[thumbnail_indices, :, -2:])
thumbnail_color_indices = self._view_indices[thumbnail_indices]
else:
vectors = copy(self._view_data[:, :, -2:])
thumbnail_color_indices = self._view_indices
vectors[:, 1, :] = vectors[:, 0, :] + vectors[:, 1, :] * self.length
downsampled = (vectors - offset) * zoom_factor
downsampled = np.clip(
downsampled, 0, np.subtract(self._thumbnail_shape[:2], 1)
)
colormapped = np.zeros(self._thumbnail_shape)
colormapped[..., 3] = 1
edge_colors = self._edge.colors[thumbnail_color_indices]
for v, ec in zip(downsampled, edge_colors):
start = v[0]
stop = v[1]
step = int(np.ceil(np.max(abs(stop - start))))
x_vals = np.linspace(start[0], stop[0], step)
y_vals = np.linspace(start[1], stop[1], step)
for x, y in zip(x_vals, y_vals):
colormapped[int(x), int(y), :] = ec
colormapped[..., 3] *= self.opacity
self.thumbnail = colormapped
def _get_value(self, position):
"""Value of the data at a position in data coordinates.
Parameters
----------
position : tuple
Position in data coordinates.
Returns
-------
value : None
Value of the data at the coord.
"""
return None