napari.layers.Surface¶
- class napari.layers.Surface(data, *, colormap='gray', contrast_limits=None, gamma=1, name=None, metadata=None, scale=None, translate=None, rotate=None, shear=None, affine=None, opacity=1, blending='translucent', shading='flat', visible=True, cache=True, experimental_clipping_planes=None, wireframe=None, normals=None)[source]¶
Bases:
napari.layers.intensity_mixin.IntensityVisualizationMixin
,napari.layers.base.base.Layer
Surface layer renders meshes onto the canvas.
- Parameters
data (2-tuple or 3-tuple of array) – The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The optional third element is the (K0, …, KL, N) array of values used to color vertices where the additional L dimensions are used to color the same mesh with different values. If not provided, it defaults to ones.
colormap (str, napari.utils.Colormap, tuple, dict) – Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap.
contrast_limits (list (2,)) – Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image.
gamma (float) – Gamma correction for determining colormap linearity. Defaults to 1.
name (str) – Name of the layer.
metadata (dict) – Layer metadata.
scale (tuple of float) – Scale factors for the layer.
translate (tuple of float) – Translation values for the layer.
rotate (float, 3-tuple of float, or n-D array.) – If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed.
shear (1-D array or n-D array) – Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal.
affine (n-D array or napari.utils.transforms.Affine) – (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari Affine transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values.
opacity (float) – Opacity of the layer visual, between 0.0 and 1.0.
blending (str) – One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {‘opaque’, ‘translucent’, and ‘additive’}.
shading (str, Shading) –
One of a list of preset shading modes that determine the lighting model using when rendering the surface in 3D.
- Shading.NONE
Corresponds to shading=’none’.
- Shading.FLAT
Corresponds to shading=’flat’.
- Shading.SMOOTH
Corresponds to shading=’smooth’.
visible (bool) – Whether the layer visual is currently being displayed.
cache (bool) – Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays.
wireframe (dict or SurfaceWireframe) – Whether and how to display the edges of the surface mesh with a wireframe.
normals (dict or SurfaceNormals) – Whether and how to display the face and vertex normals of the surface mesh.
- data¶
The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The third element is the (K0, …, KL, N) array of values used to color vertices where the additional L dimensions are used to color the same mesh with different values.
- Type
3-tuple of array
- vertices¶
Vertices of mesh triangles.
- Type
(N, D) array
- faces¶
Indices of mesh triangles.
- Type
(M, 3) array of int
- vertex_values¶
Values used to color vertices.
- Type
(K0, …, KL, N) array
- colormap¶
Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap.
- Type
- contrast_limits¶
Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image.
- Type
list (2,)
- shading¶
One of a list of preset shading modes that determine the lighting model using when rendering the surface.
‘none’
‘flat’
‘smooth’
- Type
- wireframe¶
Whether and how to display the edges of the surface mesh with a wireframe.
- Type
SurfaceWireframe
- normals¶
Whether and how to display the face and vertex normals of the surface mesh.
- Type
SurfaceNormals
Notes
- _data_view(M, 2) or (M, 3) array
The coordinates of the vertices given the viewed dimensions.
- _view_faces(P, 3) array
The integer indices of the vertices that form the triangles in the currently viewed slice.
- _colorbararray
Colorbar for current colormap.
Methods
as_layer_data_tuple
()bind_key
(key[, func, overwrite])Bind a key combination to a keymap.
block_update_properties
()click_plane_from_click_data
(click_position, ...)Calculate a (point, normal) plane parallel to the canvas in data coordinates, centered on the centre of rotation of the camera.
create
(data[, meta, layer_type])Create layer from data of type layer_type.
data_to_world
(position)Convert from data coordinates to world coordinates.
get_ray_intersections
(position, ...[, world])Get the start and end point for the ray extending from a point through the data bounding box.
get_status
(position, *[, view_direction, ...])Status message of the data at a coordinate position.
get_value
(position, *[, view_direction, ...])Value of the data at a position.
Calculate the length of the projection of a line between two mouse clicks onto a vector (or array of vectors) in data coordinates.
refresh
([event])Refresh all layer data based on current view slice.
reset_contrast_limits
([mode])Scale contrast limits to data range
Scale contrast limits range to data type.
save
(path[, plugin])Save this layer to
path
with default (or specified) plugin.set_view_slice
()world_to_data
(position)Convert from world coordinates to data coordinates.
Attributes
Extra affine transform to go from physical to world coordinates.
Determines how RGB and alpha values get mixed.
class_keymap
colormap for luminance images.
names of available colormaps.
Limits to use for the colormap.
The current valid range of the contrast limits.
String identifying cursor displayed over canvas.
Size of cursor if custom.
dtype
Whether the current layer data is editable from the viewer.
experimental_clipping_planes
Extent of layer in data and world coordinates.
displayed in status bar bottom right.
Determine if canvas pan/zoom interactivity is enabled.
Return True if this layer is fully loaded in memory.
Key/value map for user-stored data.
Unique name of the layer.
Number of dimensions in the data.
Opacity value between 0.0 and 1.0.
Rotation matrix in world coordinates.
Anisotropy factors to scale data into world coordinates.
Shear matrix in world coordinates.
source
Integer array of thumbnail for the layer
Factors to shift the layer by in units of world coordinates.
translate_grid
Whether the visual is currently being displayed.
Details
- property affine¶
Extra affine transform to go from physical to world coordinates.
- Type
napari.utils.transforms.Affine
- bind_key(key, func=<object object>, *, overwrite=False)¶
Bind a key combination to a keymap.
- Parameters
keymap (dict of str: callable) – Keymap to modify.
key (str or ...) – Key combination.
...
acts as a wildcard if no key combinations can be matched in the keymap (this will overwrite all key combinations further down the lookup chain).func (callable, None, or ...) – Callable to bind to the key combination. If
None
is passed, unbind instead....
acts as a blocker, effectively unbinding the key combination for all keymaps further down the lookup chain.overwrite (bool, keyword-only, optional) – Whether to overwrite the key combination if it already exists.
- Returns
unbound – Callable unbound by this operation, if any.
- Return type
callable or None
Notes
Key combinations are represented in the form
[modifier-]key
, e.g.a
,Control-c
, orControl-Alt-Delete
. Valid modifiers are Control, Alt, Shift, and Meta.Letters will always be read as upper-case. Due to the native implementation of the key system, Shift pressed in certain key combinations may yield inconsistent or unexpected results. Therefore, it is not recommended to use Shift with non-letter keys. On OSX, Control is swapped with Meta such that pressing Command reads as Control.
Special keys include Shift, Control, Alt, Meta, Up, Down, Left, Right, PageUp, PageDown, Insert, Delete, Home, End, Escape, Backspace, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Space, Enter, and Tab
Functions take in only one argument: the parent that the function was bound to.
By default, all functions are assumed to work on key presses only, but can be denoted to work on release too by separating the function into two statements with the yield keyword:
@viewer.bind_key('h') def hello_world(viewer): # on key press viewer.status = 'hello world!' yield # on key release viewer.status = 'goodbye world :('
To create a keymap that will block others,
bind_key(..., ...)`
.
- property blending¶
Determines how RGB and alpha values get mixed.
- Blending.OPAQUE
Allows for only the top layer to be visible and corresponds to depth_test=True, cull_face=False, blend=False.
- Blending.TRANSLUCENT
Allows for multiple layers to be blended with different opacity and corresponds to depth_test=True, cull_face=False, blend=True, blend_func=(‘src_alpha’, ‘one_minus_src_alpha’).
- Blending.ADDITIVE
Allows for multiple layers to be blended together with different colors and opacity. Useful for creating overlays. It corresponds to depth_test=False, cull_face=False, blend=True, blend_func=(‘src_alpha’, ‘one’).
- Type
Blending mode
- click_plane_from_click_data(click_position: numpy.ndarray, view_direction: numpy.ndarray, dims_displayed: List) Tuple[numpy.ndarray, numpy.ndarray] ¶
Calculate a (point, normal) plane parallel to the canvas in data coordinates, centered on the centre of rotation of the camera.
- Parameters
click_position (np.ndarray) – click position in world coordinates from mouse event.
view_direction (np.ndarray) – view direction in world coordinates from mouse event.
dims_displayed (List) – dimensions of the data array currently in view.
- Returns
click_plane – tuple of (plane_position, plane_normal) in data coordinates.
- Return type
Tuple[np.ndarray, np.ndarray]
- property colormap¶
colormap for luminance images.
- property colormaps¶
names of available colormaps.
- Type
tuple of str
- property contrast_limits¶
Limits to use for the colormap.
- Type
list of float
- property contrast_limits_range¶
The current valid range of the contrast limits.
- classmethod create(data, meta: Optional[dict] = None, layer_type: Optional[str] = None) napari.layers.base.base.Layer ¶
Create layer from data of type layer_type.
Primarily intended for usage by reader plugin hooks and creating a layer from an unwrapped layer data tuple.
- Parameters
data (Any) – Data in a format that is valid for the corresponding layer_type.
meta (dict, optional) – Dict of keyword arguments that will be passed to the corresponding layer constructor. If any keys in meta are not valid for the corresponding layer type, an exception will be raised.
layer_type (str) – Type of layer to add. Must be the (case insensitive) name of a Layer subclass. If not provided, the layer is assumed to be “image”, unless data.dtype is one of (np.int32, np.uint32, np.int64, np.uint64), in which case it is assumed to be “labels”.
- Raises
ValueError – If
layer_type
is not one of the recognized layer types.TypeError – If any keyword arguments in
meta
are unexpected for the corresponding add_* method for this layer_type.
Examples
A typical use case might be to upack a tuple of layer data with a specified layer_type.
>>> data = ( ... np.random.random((10, 2)) * 20, ... {'face_color': 'blue'}, ... 'points', ... ) >>> Layer.create(*data)
- data_to_world(position)¶
Convert from data coordinates to world coordinates.
- property extent: napari.layers.base.base.Extent¶
Extent of layer in data and world coordinates.
- get_ray_intersections(position: List[float], view_direction: numpy.ndarray, dims_displayed: List[int], world: bool = True) Union[Tuple[numpy.ndarray, numpy.ndarray], Tuple[None, None]] ¶
Get the start and end point for the ray extending from a point through the data bounding box.
- Parameters
position – the position of the point in nD coordinates. World vs. data is set by the world keyword argument.
view_direction (np.ndarray) – a unit vector giving the direction of the ray in nD coordinates. World vs. data is set by the world keyword argument.
dims_displayed – a list of the dimensions currently being displayed in the viewer.
world (bool) – True if the provided coordinates are in world coordinates. Default value is True.
- Returns
start_point (np.ndarray) – The point on the axis-aligned data bounding box that the cursor click intersects with. This is the point closest to the camera. The point is the full nD coordinates of the layer data. If the click does not intersect the axis-aligned data bounding box, None is returned.
end_point (np.ndarray) – The point on the axis-aligned data bounding box that the cursor click intersects with. This is the point farthest from the camera. The point is the full nD coordinates of the layer data. If the click does not intersect the axis-aligned data bounding box, None is returned.
- get_status(position: numpy.ndarray, *, view_direction: Optional[numpy.ndarray] = None, dims_displayed: Optional[List[int]] = None, world=False)¶
Status message of the data at a coordinate position.
- Parameters
position (tuple) – Position in either data or world coordinates.
view_direction (Optional[np.ndarray]) – A unit vector giving the direction of the ray in nD world coordinates. The default value is None.
dims_displayed (Optional[List[int]]) – A list of the dimensions currently being displayed in the viewer. The default value is None.
world (bool) – If True the position is taken to be in world coordinates and converted into data coordinates. False by default.
- Returns
msg – String containing a message that can be used as a status update.
- Return type
string
- get_value(position, *, view_direction: Optional[numpy.ndarray] = None, dims_displayed: Optional[List[int]] = None, world=False)¶
Value of the data at a position.
If the layer is not visible, return None.
- Parameters
position (tuple) – Position in either data or world coordinates.
view_direction (Optional[np.ndarray]) – A unit vector giving the direction of the ray in nD world coordinates. The default value is None.
dims_displayed (Optional[List[int]]) – A list of the dimensions currently being displayed in the viewer. The default value is None.
world (bool) – If True the position is taken to be in world coordinates and converted into data coordinates. False by default.
- Returns
value – Value of the data. If the layer is not visible return None.
- Return type
tuple, None
- property loaded: bool¶
Return True if this layer is fully loaded in memory.
This base class says that layers are permanently in the loaded state. Derived classes that do asynchronous loading can override this.
- projected_distance_from_mouse_drag(start_position: numpy.ndarray, end_position: numpy.ndarray, view_direction: numpy.ndarray, vector: numpy.ndarray, dims_displayed: Union[List, numpy.ndarray])¶
Calculate the length of the projection of a line between two mouse clicks onto a vector (or array of vectors) in data coordinates.
- Parameters
start_position (np.ndarray) – Starting point of the drag vector in data coordinates
end_position (np.ndarray) – End point of the drag vector in data coordinates
view_direction (np.ndarray) – Vector defining the plane normal of the plane onto which the drag vector is projected.
vector (np.ndarray) – (3,) unit vector or (n, 3) array thereof on which to project the drag vector from start_event to end_event. This argument is defined in data coordinates.
dims_displayed (Union[List, np.ndarray]) – (3,) list of currently displayed dimensions
- Returns
projected_distance
- Return type
(1, ) or (n, ) np.ndarray of float
- refresh(event=None)¶
Refresh all layer data based on current view slice.
- reset_contrast_limits(mode=None)¶
Scale contrast limits to data range
- reset_contrast_limits_range()¶
Scale contrast limits range to data type.
Currently, this only does something if the data type is an integer… otherwise it’s unclear what the full range should be.
- property rotate¶
Rotation matrix in world coordinates.
- Type
array
- save(path: str, plugin: Optional[str] = None) List[str] ¶
Save this layer to
path
with default (or specified) plugin.- Parameters
path (str) – A filepath, directory, or URL to open. Extensions may be used to specify output format (provided a plugin is available for the requested format).
plugin (str, optional) – Name of the plugin to use for saving. If
None
then all plugins corresponding to appropriate hook specification will be looped through to find the first one that can save the data.
- Returns
File paths of any files that were written.
- Return type
list of str
- property shear¶
Shear matrix in world coordinates.
- Type
array
- property thumbnail¶
Integer array of thumbnail for the layer
- Type
array