Source code for napari.utils.colormaps.colormap

from enum import Enum
from typing import Optional

import numpy as np
from pydantic import PrivateAttr, validator

from napari.utils.color import ColorArray

from ..events import EventedModel
from ..events.custom_types import Array
from ..translations import trans
from .colorbars import make_colorbar


class ColormapInterpolationMode(str, Enum):
    """INTERPOLATION: Interpolation mode for colormaps.

    Selects an interpolation mode for the colormap.
            * linear: colors are defined by linear interpolation between
              colors of neighboring controls points.
            * zero: colors are defined by the value of the color in the
              bin between by neighboring controls points.
    """

    LINEAR = 'linear'
    ZERO = 'zero'


[docs]class Colormap(EventedModel): """Colormap that relates intensity values to colors. Attributes ---------- colors : array, shape (N, 4) Data used in the colormap. name : str Name of the colormap. display_name : str Display name of the colormap. controls : array, shape (N,) or (N+1,) Control points of the colormap. interpolation : str Colormap interpolation mode, either 'linear' or 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). """ # fields colors: ColorArray name: str = 'custom' _display_name: Optional[str] = PrivateAttr(None) interpolation: ColormapInterpolationMode = ColormapInterpolationMode.LINEAR controls: Array[float, (-1,)] = None def __init__(self, colors, display_name: Optional[str] = None, **data): if display_name is None: display_name = data.get('name', 'custom') super().__init__(colors=colors, **data) self._display_name = display_name # controls validator must be called even if None for correct initialization @validator('controls', pre=True, always=True) def _check_controls(cls, v, values): # If no control points provided generate defaults if v is None or len(v) == 0: n_controls = len(values['colors']) + int( values['interpolation'] == ColormapInterpolationMode.ZERO ) return np.linspace(0, 1, n_controls) # Check control end points are correct if v[0] != 0 or (len(v) > 1 and v[-1] != 1): raise ValueError( trans._( 'Control points must start with 0.0 and end with 1.0. Got {start_control_point} and {end_control_point}', deferred=True, start_control_point=v[0], end_control_point=v[-1], ) ) # Check control points are sorted correctly if not np.array_equal(v, sorted(v)): raise ValueError( trans._( 'Control points need to be sorted in ascending order', deferred=True, ) ) # Check number of control points is correct n_controls_target = len(values['colors']) + int( values['interpolation'] == ColormapInterpolationMode.ZERO ) n_controls = len(v) if n_controls != n_controls_target: raise ValueError( trans._( 'Wrong number of control points provided. Expected {n_controls_target}, got {n_controls}', deferred=True, n_controls_target=n_controls_target, n_controls=n_controls, ) ) return v def __iter__(self): yield from (self.colors, self.controls, self.interpolation) def map(self, values): values = np.atleast_1d(values) if self.interpolation == ColormapInterpolationMode.LINEAR: # One color per control point cols = [ np.interp(values, self.controls, self.colors[:, i]) for i in range(4) ] cols = np.stack(cols, axis=1) elif self.interpolation == ColormapInterpolationMode.ZERO: # One color per bin indices = np.clip( np.searchsorted(self.controls, values) - 1, 0, len(self.colors) ) cols = self.colors[indices.astype(np.int32)] else: raise ValueError( trans._( 'Unrecognized Colormap Interpolation Mode', deferred=True, ) ) return cols @property def colorbar(self): return make_colorbar(self)