Source code for napari.layers.surface.surface

import copy
import warnings
from typing import Any, Optional, Union

import numpy as np
import pandas as pd

from napari.layers.base import Layer
from napari.layers.intensity_mixin import IntensityVisualizationMixin
from napari.layers.surface._surface_constants import Shading
from napari.layers.surface._surface_utils import (
    calculate_barycentric_coordinates,
)
from napari.layers.surface.normals import SurfaceNormals
from napari.layers.surface.wireframe import SurfaceWireframe
from napari.layers.utils.interactivity_utils import (
    nd_line_segment_to_displayed_data_ray,
)
from napari.layers.utils.layer_utils import _FeatureTable, calc_data_range
from napari.utils.colormaps import AVAILABLE_COLORMAPS
from napari.utils.events import Event
from napari.utils.events.event_utils import connect_no_arg
from napari.utils.geometry import find_nearest_triangle_intersection
from napari.utils.translations import trans


# Mixin must come before Layer
[docs] class Surface(IntensityVisualizationMixin, Layer): """ Surface layer renders meshes onto the canvas. Surfaces may be colored by: * setting `vertex_values`, which colors the surface with the selected `colormap` (default is uniform ones) * setting `vertex_colors`, which replaces/overrides any color from `vertex_values` * setting both `texture` and `texcoords`, which blends a the value from a texture (image) with the underlying color from `vertex_values` or `vertex_colors`. Blending is achieved by multiplying the texture color by the underlying color - an underlying value of "white" will result in the unaltered texture color. Parameters ---------- data : 2-tuple or 3-tuple of array The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The optional third element is the (K0, ..., KL, N) array of values (vertex_values) used to color vertices where the additional L dimensions are used to color the same mesh with different values. If not provided, it defaults to ones. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari `Affine` transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values. axis_labels : tuple of str, optional Dimension names of the layer data. If not provided, axis_labels will be set to (..., 'axis -2', 'axis -1'). blending : str One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {'opaque', 'translucent', and 'additive'}. cache : bool Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays. colormap : str, napari.utils.Colormap, tuple, dict Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap. contrast_limits : list (2,) Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image. experimental_clipping_planes : list of dicts, list of ClippingPlane, or ClippingPlaneList Each dict defines a clipping plane in 3D in data coordinates. Valid dictionary keys are {'position', 'normal', and 'enabled'}. Values on the negative side of the normal are discarded if the plane is enabled. feature_defaults : dict[str, Any] or Dataframe-like The default value of each feature in a table with one row. features : dict[str, array-like] or Dataframe-like Features table where each row corresponds to a shape and each column is a feature. gamma : float Gamma correction for determining colormap linearity. Defaults to 1. metadata : dict Layer metadata. name : str Name of the layer. normals : None, dict or SurfaceNormals Whether and how to display the face and vertex normals of the surface mesh. opacity : float Opacity of the layer visual, between 0.0 and 1.0. projection_mode : str How data outside the viewed dimensions but inside the thick Dims slice will be projected onto the viewed dimenions. rotate : float, 3-tuple of float, or n-D array. If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. scale : tuple of float Scale factors for the layer. shading : str, Shading One of a list of preset shading modes that determine the lighting model using when rendering the surface in 3D. * ``Shading.NONE`` Corresponds to ``shading='none'``. * ``Shading.FLAT`` Corresponds to ``shading='flat'``. * ``Shading.SMOOTH`` Corresponds to ``shading='smooth'``. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. texcoords: (N, 2) array 2D coordinates for each vertex, mapping into the texture. The number of texture coords must match the number of vertices (N). Coordinates should be in [0.0, 1.0] and are scaled to sample the 2D texture. Coordinates outside this range will wrap, but this behavior should be considered an implementation detail: there are no plans to change it, but it's a feature of the underlying vispy visual. texture: (I, J) or (I, J, C) array A 2D texture to be mapped onto the mesh using `texcoords`. C may be 3 (RGB) or 4 (RGBA) channels for a color texture. translate : tuple of float Translation values for the layer units : tuple of str or pint.Unit, optional Units of the layer data in world coordinates. If not provided, the default units are assumed to be pixels. vertex_colors: (N, C) or (K0, ..., KL, N, C) array of color values Take care that the (optional) L additional dimensions match those of vertex_values for proper slicing. C may be 3 (RGB) or 4 (RGBA) channels.. visible : bool Whether the layer visual is currently being displayed. wireframe : None, dict or SurfaceWireframe Whether and how to display the edges of the surface mesh with a wireframe. Attributes ---------- data : 3-tuple of array The first element of the tuple is an (N, D) array of vertices of mesh triangles. The second is an (M, 3) array of int of indices of the mesh triangles. The third element is the (K0, ..., KL, N) array of values used to color vertices where the additional L dimensions are used to color the same mesh with different values. axis_labels : tuple of str Dimension names of the layer data. vertices : (N, D) array Vertices of mesh triangles. faces : (M, 3) array of int Indices of mesh triangles. vertex_values : (K0, ..., KL, N) array Values used to color vertices. features : DataFrame-like Features table where each row corresponds to a vertex and each column is a feature. feature_defaults : DataFrame-like Stores the default value of each feature in a table with one row. colormap : str, napari.utils.Colormap, tuple, dict Colormap to use for luminance images. If a string must be the name of a supported colormap from vispy or matplotlib. If a tuple the first value must be a string to assign as a name to a colormap and the second item must be a Colormap. If a dict the key must be a string to assign as a name to a colormap and the value must be a Colormap. contrast_limits : list (2,) Color limits to be used for determining the colormap bounds for luminance images. If not passed is calculated as the min and max of the image. shading: str One of a list of preset shading modes that determine the lighting model using when rendering the surface. * ``'none'`` * ``'flat'`` * ``'smooth'`` gamma : float Gamma correction for determining colormap linearity. wireframe : SurfaceWireframe Whether and how to display the edges of the surface mesh with a wireframe. normals : SurfaceNormals Whether and how to display the face and vertex normals of the surface mesh. units: tuple of pint.Unit Units of the layer data in world coordinates. Notes ----- _data_view : (M, 2) or (M, 3) array The coordinates of the vertices given the viewed dimensions. _view_faces : (P, 3) array The integer indices of the vertices that form the triangles in the currently viewed slice. _colorbar : array Colorbar for current colormap. """ _colormaps = AVAILABLE_COLORMAPS def __init__( self, data, *, affine=None, axis_labels=None, blending='translucent', cache=True, colormap='gray', contrast_limits=None, experimental_clipping_planes=None, feature_defaults=None, features=None, gamma=1.0, metadata=None, name=None, normals=None, opacity=1.0, projection_mode='none', rotate=None, scale=None, shading='flat', shear=None, texcoords=None, texture=None, translate=None, units=None, vertex_colors=None, visible=True, wireframe=None, ) -> None: ndim = data[0].shape[1] super().__init__( data, ndim, affine=affine, axis_labels=axis_labels, blending=blending, cache=cache, experimental_clipping_planes=experimental_clipping_planes, metadata=metadata, name=name, opacity=opacity, projection_mode=projection_mode, rotate=rotate, scale=scale, shear=shear, translate=translate, units=units, visible=visible, ) self.events.add( interpolation=Event, rendering=Event, shading=Event, wireframe=Event, normals=Event, texture=Event, texcoords=Event, features=Event, feature_defaults=Event, ) # assign mesh data and establish default behavior if len(data) not in (2, 3): raise ValueError( trans._( 'Surface data tuple must be 2 or 3, specifying vertices, faces, and optionally vertex values, instead got length {length}.', deferred=True, length=len(data), ) ) self._vertices = data[0] self._faces = data[1] if len(data) == 3: self._vertex_values = data[2] else: self._vertex_values = np.ones(len(self._vertices)) self._feature_table = _FeatureTable.from_layer( features=features, feature_defaults=feature_defaults, num_data=len(data[0]), ) self._texture = texture self._texcoords = texcoords self._vertex_colors = vertex_colors # Set contrast_limits and colormaps self._gamma = gamma if contrast_limits is not None: self._contrast_limits_range = contrast_limits else: self._contrast_limits_range = calc_data_range(self._vertex_values) self._contrast_limits = self._contrast_limits_range self.colormap = colormap self.contrast_limits = self._contrast_limits # Data containing vectors in the currently viewed slice self._data_view = np.zeros((0, self._slice_input.ndisplay)) self._view_faces = np.zeros((0, 3), dtype=int) self._view_vertex_values: Union[list[Any], np.ndarray] = [] self._view_vertex_colors: Union[list[Any], np.ndarray] = [] # Trigger generation of view slice and thumbnail. # Use _update_dims instead of refresh here because _get_ndim is # dependent on vertex_values as well as vertices. self._update_dims() # Shading mode self._shading = shading # initialize normals and wireframe self._wireframe = SurfaceWireframe() self._normals = SurfaceNormals() connect_no_arg(self.wireframe.events, self.events, 'wireframe') connect_no_arg(self.normals.events, self.events, 'normals') self.wireframe = wireframe self.normals = normals def _calc_data_range(self, mode='data'): return calc_data_range(self.vertex_values) @property def dtype(self) -> np.dtype: return self.vertex_values.dtype @property def data(self): return (self.vertices, self.faces, self.vertex_values) @data.setter def data(self, data): if len(data) not in (2, 3): raise ValueError( trans._( 'Surface data tuple must be 2 or 3, specifying vertices, faces, and optionally vertex values, instead got length {data_length}.', deferred=True, data_length=len(data), ) ) self._vertices = data[0] self._faces = data[1] if len(data) == 3: self._vertex_values = data[2] else: self._vertex_values = np.ones(len(self._vertices)) self._update_dims() self.events.data(value=self.data) self._reset_editable() if self._keep_auto_contrast: self.reset_contrast_limits() @property def vertices(self): return self._vertices @vertices.setter def vertices(self, vertices): """Array of vertices of mesh triangles.""" self._vertices = vertices self._update_dims() self.events.data(value=self.data) self._reset_editable() @property def vertex_values(self) -> np.ndarray: return self._vertex_values @vertex_values.setter def vertex_values(self, vertex_values: np.ndarray) -> None: """Array of values (n, 1) used to color vertices with a colormap.""" if vertex_values is None: vertex_values = np.ones(len(self._vertices)) self._vertex_values = vertex_values self._update_dims() self.events.data(value=self.data) self._reset_editable() @property def vertex_colors(self) -> Optional[np.ndarray]: return self._vertex_colors @vertex_colors.setter def vertex_colors(self, vertex_colors: Optional[np.ndarray]) -> None: """Values used to directly color vertices. Note that dims sliders for this layer are based on vertex_values, so make sure the shape of vertex_colors matches the shape of vertex_values for proper slicing. That is: vertex_colors should be None, one set (N, C), or completely match the dimensions of vertex_values (K0, ..., KL, N, C). """ if vertex_colors is not None and not isinstance( vertex_colors, np.ndarray ): msg = ( f'texture should be None or ndarray; got {type(vertex_colors)}' ) raise ValueError(msg) self._vertex_colors = vertex_colors self._update_dims() self.events.data(value=self.data) self._reset_editable() @property def faces(self) -> np.ndarray: return self._faces @faces.setter def faces(self, faces: np.ndarray) -> None: """Array of indices of mesh triangles.""" self.faces = faces self.refresh() self.events.data(value=self.data) self._reset_editable() def _get_ndim(self) -> int: """Determine number of dimensions of the layer.""" return self.vertices.shape[1] + (self.vertex_values.ndim - 1) @property def _extent_data(self) -> np.ndarray: """Extent of layer in data coordinates. Returns ------- extent_data : array, shape (2, D) """ if len(self.vertices) == 0: extrema = np.full((2, self.ndim), np.nan) else: maxs = np.max(self.vertices, axis=0) mins = np.min(self.vertices, axis=0) # The full dimensionality and shape of the layer is determined by # the number of additional vertex value dimensions and the # dimensionality of the vertices themselves if self.vertex_values.ndim > 1: mins = [0] * (self.vertex_values.ndim - 1) + list(mins) maxs = [n - 1 for n in self.vertex_values.shape[:-1]] + list( maxs ) extrema = np.vstack([mins, maxs]) return extrema @property def features(self) -> pd.DataFrame: """Dataframe-like features table. It is an implementation detail that this is a `pandas.DataFrame`. In the future, we will target the currently-in-development Data API dataframe protocol [1]. This will enable us to use alternate libraries such as xarray or cuDF for additional features without breaking existing usage of this. If you need to specifically rely on the pandas API, please coerce this to a `pandas.DataFrame` using `features_to_pandas_dataframe`. References ---------- .. [1]: https://data-apis.org/dataframe-protocol/latest/API.html """ return self._feature_table.values @features.setter def features( self, features: Union[dict[str, np.ndarray], pd.DataFrame], ) -> None: self._feature_table.set_values(features, num_data=len(self.data[0])) self.events.features() @property def feature_defaults(self) -> pd.DataFrame: """Dataframe-like with one row of feature default values. See `features` for more details on the type of this property. """ return self._feature_table.defaults @feature_defaults.setter def feature_defaults( self, defaults: Union[dict[str, Any], pd.DataFrame] ) -> None: self._feature_table.set_defaults(defaults) self.events.feature_defaults() @property def shading(self) -> str: return str(self._shading) @shading.setter def shading(self, shading: Union[str, Shading]) -> None: if isinstance(shading, Shading): self._shading = shading else: self._shading = Shading(shading) self.events.shading(value=self._shading) @property def wireframe(self) -> SurfaceWireframe: return self._wireframe @wireframe.setter def wireframe( self, wireframe: Union[dict, SurfaceWireframe, None] ) -> None: if wireframe is None: self._wireframe.reset() elif isinstance(wireframe, (SurfaceWireframe, dict)): self._wireframe.update(wireframe) else: raise ValueError( f'wireframe should be None, a dict, or SurfaceWireframe; got {type(wireframe)}' ) self.events.wireframe(value=self._wireframe) @property def normals(self) -> SurfaceNormals: return self._normals @normals.setter def normals(self, normals: Union[dict, SurfaceNormals, None]) -> None: if normals is None: self._normals.reset() elif not isinstance(normals, (SurfaceNormals, dict)): raise ValueError( f'normals should be None, a dict, or SurfaceNormals; got {type(normals)}' ) else: if isinstance(normals, SurfaceNormals): normals = {k: dict(v) for k, v in normals.dict().items()} # ignore modes, they are unmutable cause errors for norm_type in ('face', 'vertex'): normals.get(norm_type, {}).pop('mode', None) self._normals.update(normals) self.events.normals(value=self._normals) @property def texture(self) -> Optional[np.ndarray]: return self._texture @texture.setter def texture(self, texture: np.ndarray) -> None: if texture is not None and not isinstance(texture, np.ndarray): msg = f'texture should be None or ndarray; got {type(texture)}' raise ValueError(msg) self._texture = texture self.events.texture(value=self._texture) @property def texcoords(self) -> Optional[np.ndarray]: return self._texcoords @texcoords.setter def texcoords(self, texcoords: np.ndarray) -> None: if texcoords is not None and not isinstance(texcoords, np.ndarray): msg = f'texcoords should be None or ndarray; got {type(texcoords)}' raise ValueError(msg) self._texcoords = texcoords self.events.texcoords(value=self._texcoords) @property def _has_texture(self) -> bool: """Whether the layer has sufficient data for texturing""" return bool( self.texture is not None and self.texcoords is not None and len(self.texcoords) ) def _get_state(self) -> dict[str, Any]: """Get dictionary of layer state. Returns ------- state : dict of str to Any Dictionary of layer state. """ state = self._get_base_state() state.update( { 'colormap': self.colormap.dict(), 'contrast_limits': self.contrast_limits, 'gamma': self.gamma, 'shading': self.shading, 'data': self.data, 'features': self.features, 'feature_defaults': self.feature_defaults, 'wireframe': self.wireframe.dict(), 'normals': self.normals.dict(), 'texture': self.texture, 'texcoords': self.texcoords, 'vertex_colors': self.vertex_colors, } ) return state def _slice_associated_data( self, data: np.ndarray, vertex_ndim: int, dims: int = 1, ) -> Union[list[Any], np.ndarray]: """Return associated layer data (e.g. vertex values, colors) within the current slice. """ if data is None: return [] data_ndim = data.ndim - 1 if data_ndim >= dims: # Get indices for axes corresponding to data dimensions data_indices: tuple[Union[int, slice], ...] = tuple( slice(None) if np.isnan(idx) else int(np.round(idx)) for idx in self._data_slice.point[:-vertex_ndim] ) data = data[data_indices] if data.ndim > dims: warnings.warn( trans._( 'Assigning multiple data per vertex after slicing ' 'is not allowed. All dimensions corresponding to ' 'vertex data must be non-displayed dimensions. Data ' 'may not be visible.', deferred=True, ), category=UserWarning, stacklevel=2, ) return [] return data def _set_view_slice(self): """Sets the view given the indices to slice with.""" N, vertex_ndim = self.vertices.shape values_ndim = self.vertex_values.ndim - 1 self._view_vertex_values = self._slice_associated_data( self.vertex_values, vertex_ndim, ) self._view_vertex_colors = self._slice_associated_data( self.vertex_colors, vertex_ndim, dims=2, ) if len(self._view_vertex_values) == 0: self._data_view = np.zeros((0, self._slice_input.ndisplay)) self._view_faces = np.zeros((0, 3), dtype=int) return if values_ndim > 0: indices = np.array(self._data_slice.point[-vertex_ndim:]) disp = [ d for d in np.subtract(self._slice_input.displayed, values_ndim) if d >= 0 ] not_disp = [ d for d in np.subtract( self._slice_input.not_displayed, values_ndim ) if d >= 0 ] else: indices = np.array(self._data_slice.point) not_disp = list(self._slice_input.not_displayed) disp = list(self._slice_input.displayed) self._data_view = self.vertices[:, disp] if len(self.vertices) == 0: self._view_faces = np.zeros((0, 3), dtype=int) elif vertex_ndim > self._slice_input.ndisplay: vertices = self.vertices[:, not_disp].astype('int') triangles = vertices[self.faces] matches = np.all(triangles == indices[not_disp], axis=(1, 2)) matches = np.where(matches)[0] if len(matches) == 0: self._view_faces = np.zeros((0, 3), dtype=int) else: self._view_faces = self.faces[matches] else: self._view_faces = self.faces if self._keep_auto_contrast: self.reset_contrast_limits() def _update_thumbnail(self) -> None: """Update thumbnail with current surface.""" def _get_value(self, position) -> None: """Value of the data at a position in data coordinates. Parameters ---------- position : tuple Position in data coordinates. Returns ------- value : None Value of the data at the coord. """ return def _get_value_3d( self, start_point: Optional[np.ndarray], end_point: Optional[np.ndarray], dims_displayed: list[int], ) -> tuple[Union[None, float, int], Optional[int]]: """Get the layer data value along a ray Parameters ---------- start_point : np.ndarray The start position of the ray used to interrogate the data. end_point : np.ndarray The end position of the ray used to interrogate the data. dims_displayed : List[int] The indices of the dimensions currently displayed in the Viewer. Returns ------- value The data value along the supplied ray. vertex : None Index of vertex if any that is at the coordinates. """ if len(dims_displayed) != 3: # only applies to 3D return None, None if (start_point is None) or (end_point is None): # return None if the ray doesn't intersect the data bounding box return None, None start_position, ray_direction = nd_line_segment_to_displayed_data_ray( start_point=start_point, end_point=end_point, dims_displayed=dims_displayed, ) # get the mesh triangles mesh_triangles = self._data_view[self._view_faces] # get the triangles intersection intersection_index, intersection = find_nearest_triangle_intersection( ray_position=start_position, ray_direction=ray_direction, triangles=mesh_triangles, ) if intersection_index is None or intersection is None: return None, None # add the full nD coords to intersection intersection_point = start_point.copy() intersection_point[dims_displayed] = intersection # calculate the value from the intersection triangle_vertex_indices = self._view_faces[intersection_index] triangle_vertices = self._data_view[triangle_vertex_indices] barycentric_coordinates = calculate_barycentric_coordinates( intersection, triangle_vertices ) vertex_values = self._view_vertex_values[triangle_vertex_indices] intersection_value = (barycentric_coordinates * vertex_values).sum() return intersection_value, intersection_index def __copy__(self): """Create a copy of this layer. Returns ------- layer : napari.layers.Layer Copy of this layer. Notes ----- This method is defined for purpose of asv memory benchmarks. The copy of data is intentional for properly estimating memory usage for layer. If you want a to copy a layer without coping the data please use `layer.create(*layer.as_layer_data_tuple())` If you change this method, validate if memory benchmarks are still working properly. """ data, meta, layer_type = self.as_layer_data_tuple() return self.create( tuple(copy.copy(x) for x in self.data), meta=meta, layer_type=layer_type, )