Source code for napari.layers.labels.labels

import warnings
from collections import deque
from collections.abc import Sequence
from contextlib import contextmanager
from typing import (
    Any,
    Callable,
    ClassVar,
    Optional,
    Union,
    cast,
)

import numpy as np
import numpy.typing as npt
import pandas as pd
from scipy import ndimage as ndi
from skimage.draw import polygon2mask

from napari.layers._data_protocols import LayerDataProtocol
from napari.layers._multiscale_data import MultiScaleData
from napari.layers._scalar_field.scalar_field import ScalarFieldBase
from napari.layers.base import Layer, no_op
from napari.layers.base._base_mouse_bindings import (
    highlight_box_handles,
    transform_with_box,
)
from napari.layers.image._image_utils import guess_multiscale
from napari.layers.image._slice import _ImageSliceResponse
from napari.layers.labels._labels_constants import (
    LabelColorMode,
    LabelsRendering,
    Mode,
)
from napari.layers.labels._labels_mouse_bindings import (
    BrushSizeOnMouseMove,
    draw,
    pick,
)
from napari.layers.labels._labels_utils import (
    expand_slice,
    get_contours,
    indices_in_shape,
    interpolate_coordinates,
    sphere_indices,
)
from napari.layers.utils.layer_utils import _FeatureTable
from napari.utils._dtype import normalize_dtype, vispy_texture_dtype
from napari.utils._indexing import elements_in_slice, index_in_slice
from napari.utils.colormaps import (
    direct_colormap,
    label_colormap,
)
from napari.utils.colormaps.colormap import (
    CyclicLabelColormap,
    LabelColormapBase,
    _normalize_label_colormap,
)
from napari.utils.colormaps.colormap_utils import shuffle_and_extend_colormap
from napari.utils.events import EmitterGroup, Event
from napari.utils.events.custom_types import Array
from napari.utils.geometry import clamp_point_to_bounding_box
from napari.utils.misc import StringEnum, _is_array_type
from napari.utils.naming import magic_name
from napari.utils.status_messages import generate_layer_coords_status
from napari.utils.translations import trans

__all__ = ('Labels',)


[docs] class Labels(ScalarFieldBase): """Labels (or segmentation) layer. An image-like layer where every pixel contains an integer ID corresponding to the region it belongs to. Parameters ---------- data : array or list of array Labels data as an array or multiscale. Must be integer type or bools. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. affine : n-D array or napari.utils.transforms.Affine (N+1, N+1) affine transformation matrix in homogeneous coordinates. The first (N, N) entries correspond to a linear transform and the final column is a length N translation vector and a 1 or a napari `Affine` transform object. Applied as an extra transform on top of the provided scale, rotate, and shear values. axis_labels : tuple of str, optional Dimension names of the layer data. If not provided, axis_labels will be set to (..., 'axis -2', 'axis -1'). blending : str One of a list of preset blending modes that determines how RGB and alpha values of the layer visual get mixed. Allowed values are {'opaque', 'translucent', and 'additive'}. cache : bool Whether slices of out-of-core datasets should be cached upon retrieval. Currently, this only applies to dask arrays. colormap : CyclicLabelColormap or DirectLabelColormap or None Colormap to use for the labels. If None, a random colormap will be used. depiction : str 3D Depiction mode. Must be one of {'volume', 'plane'}. The default value is 'volume'. experimental_clipping_planes : list of dicts, list of ClippingPlane, or ClippingPlaneList Each dict defines a clipping plane in 3D in data coordinates. Valid dictionary keys are {'position', 'normal', and 'enabled'}. Values on the negative side of the normal are discarded if the plane is enabled. features : dict[str, array-like] or DataFrame Features table where each row corresponds to a label and each column is a feature. The first row corresponds to the background label. metadata : dict Layer metadata. multiscale : bool Whether the data is a multiscale image or not. Multiscale data is represented by a list of array like image data. If not specified by the user and if the data is a list of arrays that decrease in shape then it will be taken to be multiscale. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. name : str Name of the layer. opacity : float Opacity of the layer visual, between 0.0 and 1.0. plane : dict or SlicingPlane Properties defining plane rendering in 3D. Properties are defined in data coordinates. Valid dictionary keys are {'position', 'normal', 'thickness', and 'enabled'}. projection_mode : str How data outside the viewed dimensions but inside the thick Dims slice will be projected onto the viewed dimensions properties : dict {str: array (N,)} or DataFrame Properties for each label. Each property should be an array of length N, where N is the number of labels, and the first property corresponds to background. rendering : str 3D Rendering mode used by vispy. Must be one {'translucent', 'iso_categorical'}. 'translucent' renders without lighting. 'iso_categorical' uses isosurface rendering to calculate lighting effects on labeled surfaces. The default value is 'iso_categorical'. rotate : float, 3-tuple of float, or n-D array. If a float convert into a 2D rotation matrix using that value as an angle. If 3-tuple convert into a 3D rotation matrix, using a yaw, pitch, roll convention. Otherwise assume an nD rotation. Angles are assumed to be in degrees. They can be converted from radians with np.degrees if needed. scale : tuple of float Scale factors for the layer. shear : 1-D array or n-D array Either a vector of upper triangular values, or an nD shear matrix with ones along the main diagonal. translate : tuple of float Translation values for the layer. units : tuple of str or pint.Unit, optional Units of the layer data in world coordinates. If not provided, the default units are assumed to be pixels. visible : bool Whether the layer visual is currently being displayed. Attributes ---------- data : array or list of array Integer label data as an array or multiscale. Can be N dimensional. Every pixel contains an integer ID corresponding to the region it belongs to. The label 0 is rendered as transparent. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. axis_labels : tuple of str Dimension names of the layer data. multiscale : bool Whether the data is a multiscale image or not. Multiscale data is represented by a list of array like image data. The first image in the list should be the largest. Please note multiscale rendering is only supported in 2D. In 3D, only the lowest resolution scale is displayed. metadata : dict Labels metadata. num_colors : int Number of unique colors to use in colormap. DEPRECATED: set ``colormap`` directly, using `napari.utils.colormaps.label_colormap`. features : Dataframe-like Features table where each row corresponds to a label and each column is a feature. The first row corresponds to the background label. properties : dict {str: array (N,)}, DataFrame Properties for each label. Each property should be an array of length N, where N is the number of labels, and the first property corresponds to background. color : dict of int to str or array Custom label to color mapping. Values must be valid color names or RGBA arrays. While there is no limit to the number of custom labels, the the layer will render incorrectly if they map to more than 1024 distinct colors. DEPRECATED: set ``colormap`` directly, using `napari.utils.colormaps.DirectLabelColormap`. seed : float Seed for colormap random generator. DEPRECATED: set ``colormap`` directly, using `napari.utils.colormaps.label_colormap`. opacity : float Opacity of the labels, must be between 0 and 1. contiguous : bool If `True`, the fill bucket changes only connected pixels of same label. n_edit_dimensions : int The number of dimensions across which labels will be edited. contour : int If greater than 0, displays contours of labels instead of shaded regions with a thickness equal to its value. Must be >= 0. brush_size : float Size of the paint brush in data coordinates. selected_label : int Index of selected label. Can be greater than the current maximum label. mode : str Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas. In PICK mode the cursor functions like a color picker, setting the clicked on label to be the current label. If the background is picked it will select the background label `0`. In PAINT mode the cursor functions like a paint brush changing any pixels it brushes over to the current label. If the background label `0` is selected than any pixels will be changed to background and this tool functions like an eraser. The size and shape of the cursor can be adjusted in the properties widget. In FILL mode the cursor functions like a fill bucket replacing pixels of the label clicked on with the current label. It can either replace all pixels of that label or just those that are contiguous with the clicked on pixel. If the background label `0` is selected than any pixels will be changed to background and this tool functions like an eraser. In ERASE mode the cursor functions similarly to PAINT mode, but to paint with background label, which effectively removes the label. plane : SlicingPlane Properties defining plane rendering in 3D. experimental_clipping_planes : ClippingPlaneList Clipping planes defined in data coordinates, used to clip the volume. units: tuple of pint.Unit Units of the layer data in world coordinates. Notes ----- _selected_color : 4-tuple or None RGBA tuple of the color of the selected label, or None if the background label `0` is selected. """ events: EmitterGroup _colormap: LabelColormapBase _modeclass = Mode _drag_modes: ClassVar[dict[Mode, Callable[['Labels', Event], None]]] = { # type: ignore[assignment] Mode.PAN_ZOOM: no_op, Mode.TRANSFORM: transform_with_box, Mode.PICK: pick, Mode.PAINT: draw, Mode.FILL: draw, Mode.ERASE: draw, Mode.POLYGON: no_op, # the overlay handles mouse events in this mode } brush_size_on_mouse_move = BrushSizeOnMouseMove(min_brush_size=1) _move_modes: ClassVar[ dict[StringEnum, Callable[['Labels', Event], None]] ] = { # type: ignore[assignment] Mode.PAN_ZOOM: no_op, Mode.TRANSFORM: highlight_box_handles, Mode.PICK: no_op, Mode.PAINT: brush_size_on_mouse_move, Mode.FILL: no_op, Mode.ERASE: brush_size_on_mouse_move, Mode.POLYGON: no_op, # the overlay handles mouse events in this mode } _cursor_modes: ClassVar[dict[Mode, str]] = { # type: ignore[assignment] Mode.PAN_ZOOM: 'standard', Mode.TRANSFORM: 'standard', Mode.PICK: 'cross', Mode.PAINT: 'circle', Mode.FILL: 'cross', Mode.ERASE: 'circle', Mode.POLYGON: 'cross', } _history_limit = 100 def __init__( self, data, *, affine=None, axis_labels=None, blending='translucent', cache=True, colormap=None, depiction='volume', experimental_clipping_planes=None, features=None, metadata=None, multiscale=None, name=None, opacity=0.7, plane=None, projection_mode='none', properties=None, rendering='iso_categorical', rotate=None, scale=None, shear=None, translate=None, units=None, visible=True, ) -> None: if name is None and data is not None: name = magic_name(data) self._seed = 0.5 # We use 50 colors (49 + transparency) by default for historical # consistency. This may change in future versions. self._random_colormap = label_colormap( 49, self._seed, background_value=0 ) self._original_random_colormap = self._random_colormap self._direct_colormap = direct_colormap( {0: 'transparent', None: 'black'} ) self._colormap = self._random_colormap self._color_mode = LabelColorMode.AUTO self._show_selected_label = False self._contour = 0 data = self._ensure_int_labels(data) super().__init__( data, affine=affine, axis_labels=axis_labels, blending=blending, cache=cache, depiction=depiction, experimental_clipping_planes=experimental_clipping_planes, rendering=rendering, metadata=metadata, multiscale=multiscale, name=name, scale=scale, shear=shear, plane=plane, opacity=opacity, projection_mode=projection_mode, rotate=rotate, translate=translate, units=units, visible=visible, ) self.events.add( brush_shape=Event, brush_size=Event, colormap=Event, contiguous=Event, contour=Event, features=Event, labels_update=Event, n_edit_dimensions=Event, paint=Event, preserve_labels=Event, properties=Event, selected_label=Event, show_selected_label=Event, ) from napari.components.overlays.labels_polygon import ( LabelsPolygonOverlay, ) self._overlays.update({'polygon': LabelsPolygonOverlay()}) self._feature_table = _FeatureTable.from_layer( features=features, properties=properties ) self._label_index = self._make_label_index() self._n_edit_dimensions = 2 self._contiguous = True self._brush_size = 10 self._selected_label = 1 self.colormap.selection = self._selected_label self.colormap.use_selection = self._show_selected_label self._prev_selected_label = None self._selected_color = self.get_color(self._selected_label) self._updated_slice = None if colormap is not None: self._set_colormap(colormap) self._status = self.mode self._preserve_labels = False def _post_init(self): self._reset_history() # Trigger generation of view slice and thumbnail self.refresh() self._reset_editable() @property def rendering(self): """Return current rendering mode. Selects a preset rendering mode in vispy that determines how lablels are displayed. Options include: * ``translucent``: voxel colors are blended along the view ray until the result is opaque. * ``iso_categorical``: isosurface for categorical data. Cast a ray until a non-background value is encountered. At that location, lighning calculations are performed to give the visual appearance of a surface. Returns ------- str The current rendering mode """ return str(self._rendering) @rendering.setter def rendering(self, rendering): self._rendering = LabelsRendering(rendering) self.events.rendering() @property def contiguous(self): """bool: fill bucket changes only connected pixels of same label.""" return self._contiguous @contiguous.setter def contiguous(self, contiguous): self._contiguous = contiguous self.events.contiguous() @property def n_edit_dimensions(self): return self._n_edit_dimensions @n_edit_dimensions.setter def n_edit_dimensions(self, n_edit_dimensions): self._n_edit_dimensions = n_edit_dimensions self.events.n_edit_dimensions() @property def contour(self) -> int: """int: displays contours of labels instead of shaded regions.""" return self._contour @contour.setter def contour(self, contour: int) -> None: if contour < 0: raise ValueError('contour value must be >= 0') self._contour = int(contour) self.events.contour() self.refresh() @property def brush_size(self): """float: Size of the paint in world coordinates.""" return self._brush_size @brush_size.setter def brush_size(self, brush_size): self._brush_size = int(brush_size) self.cursor_size = self._calculate_cursor_size() self.events.brush_size() def _calculate_cursor_size(self): # Convert from brush size in data coordinates to # cursor size in world coordinates scale = self._data_to_world.scale min_scale = np.min( [abs(scale[d]) for d in self._slice_input.displayed] ) return abs(self.brush_size * min_scale) def new_colormap(self, seed: Optional[int] = None): if seed is None: seed = np.random.default_rng().integers(2**32 - 1) orig = self._original_random_colormap self.colormap = shuffle_and_extend_colormap( self._original_random_colormap, seed ) self._original_random_colormap = orig @property def colormap(self) -> LabelColormapBase: return self._colormap @colormap.setter def colormap(self, colormap: LabelColormapBase): self._set_colormap(colormap) def _set_colormap(self, colormap): colormap = _normalize_label_colormap(colormap) if isinstance(colormap, CyclicLabelColormap): self._random_colormap = colormap self._original_random_colormap = colormap self._colormap = self._random_colormap color_mode = LabelColorMode.AUTO else: self._direct_colormap = colormap # `self._direct_colormap.color_dict` may contain just the default None and background label # colors, in which case we need to be in AUTO color mode. Otherwise, # `self._direct_colormap.color_dict` contains colors for all labels, and we should be in DIRECT # mode. # For more information # - https://github.com/napari/napari/issues/2479 # - https://github.com/napari/napari/issues/2953 if self._is_default_colors(self._direct_colormap.color_dict): color_mode = LabelColorMode.AUTO self._colormap = self._random_colormap else: color_mode = LabelColorMode.DIRECT self._colormap = self._direct_colormap self._cached_labels = None # invalidate the cached color mapping self._selected_color = self.get_color(self.selected_label) self._color_mode = color_mode self.events.colormap() # Will update the LabelVispyColormap shader self.events.selected_label() self.refresh() @property def data(self) -> Union[LayerDataProtocol, MultiScaleData]: """array: Image data.""" return self._data @data.setter def data(self, data: Union[LayerDataProtocol, MultiScaleData]): data = self._ensure_int_labels(data) self._data = data self._ndim = len(self._data.shape) self._update_dims() self.events.data(value=self.data) self._reset_editable() @property def features(self): """Dataframe-like features table. It is an implementation detail that this is a `pandas.DataFrame`. In the future, we will target the currently-in-development Data API dataframe protocol [1]_. This will enable us to use alternate libraries such as xarray or cuDF for additional features without breaking existing usage of this. If you need to specifically rely on the pandas API, please coerce this to a `pandas.DataFrame` using `features_to_pandas_dataframe`. References ---------- .. [1] https://data-apis.org/dataframe-protocol/latest/API.html """ return self._feature_table.values @features.setter def features( self, features: Union[dict[str, np.ndarray], pd.DataFrame], ) -> None: self._feature_table.set_values(features) self._label_index = self._make_label_index() self.events.properties() self.events.features() @property def properties(self) -> dict[str, np.ndarray]: """dict {str: array (N,)}, DataFrame: Properties for each label.""" return self._feature_table.properties() @properties.setter def properties(self, properties: dict[str, Array]): self.features = properties def _make_label_index(self) -> dict[int, int]: features = self._feature_table.values label_index = {} if 'index' in features: label_index = {i: k for k, i in enumerate(features['index'])} elif features.shape[1] > 0: label_index = {i: i for i in range(features.shape[0])} return label_index def _is_default_colors(self, color): """Returns True if color contains only default colors, otherwise False. Default colors are black for `None` and transparent for `self.colormap.background_value`. Parameters ---------- color : Dict Dictionary of label value to color array Returns ------- bool True if color contains only default colors, otherwise False. """ if {None, self.colormap.background_value} != set(color.keys()): return False if not np.allclose(color[None], [0, 0, 0, 1]): return False if not np.allclose( color[self.colormap.background_value], [0, 0, 0, 0] ): return False return True def _ensure_int_labels(self, data): """Ensure data is integer by converting from bool if required, raising an error otherwise.""" looks_multiscale, data = guess_multiscale(data) if not looks_multiscale: data = [data] int_data = [] for data_level in data: # normalize_dtype turns e.g. tensorstore or torch dtypes into # numpy dtypes if np.issubdtype(normalize_dtype(data_level.dtype), np.floating): raise TypeError( trans._( 'Only integer types are supported for Labels layers, but data contains {data_level_type}.', data_level_type=data_level.dtype, ) ) if data_level.dtype == bool: int_data.append(data_level.astype(np.int8)) else: int_data.append(data_level) data = int_data if not looks_multiscale: data = data[0] return data def _get_state(self) -> dict[str, Any]: """Get dictionary of layer state. Returns ------- state : dict of str to Any Dictionary of layer state. """ state = self._get_base_state() state.update( { 'multiscale': self.multiscale, 'properties': self.properties, 'rendering': self.rendering, 'depiction': self.depiction, 'plane': self.plane.dict(), 'experimental_clipping_planes': [ plane.dict() for plane in self.experimental_clipping_planes ], 'data': self.data, 'features': self.features, 'colormap': self.colormap, } ) return state @property def selected_label(self): """int: Index of selected label.""" return self._selected_label @selected_label.setter def selected_label(self, selected_label): if selected_label == self.selected_label: return self._prev_selected_label = self.selected_label self.colormap.selection = selected_label self._selected_label = selected_label self._selected_color = self.get_color(selected_label) self.events.selected_label() if self.show_selected_label: self.refresh()
[docs] def swap_selected_and_background_labels(self): """Swap between the selected label and the background label.""" if self.selected_label != self.colormap.background_value: self.selected_label = self.colormap.background_value else: self.selected_label = self._prev_selected_label
@property def show_selected_label(self): """Whether to filter displayed labels to only the selected label or not""" return self._show_selected_label @show_selected_label.setter def show_selected_label(self, show_selected): self._show_selected_label = show_selected self.colormap.use_selection = show_selected self.colormap.selection = self.selected_label self.events.show_selected_label(show_selected_label=show_selected) self.refresh() # Only overriding to change the docstring @property def mode(self): """MODE: Interactive mode. The normal, default mode is PAN_ZOOM, which allows for normal interactivity with the canvas. In PICK mode the cursor functions like a color picker, setting the clicked on label to be the current label. If the background is picked it will select the background label `0`. In PAINT mode the cursor functions like a paint brush changing any pixels it brushes over to the current label. If the background label `0` is selected than any pixels will be changed to background and this tool functions like an eraser. The size and shape of the cursor can be adjusted in the properties widget. In FILL mode the cursor functions like a fill bucket replacing pixels of the label clicked on with the current label. It can either replace all pixels of that label or just those that are contiguous with the clicked on pixel. If the background label `0` is selected than any pixels will be changed to background and this tool functions like an eraser. In ERASE mode the cursor functions similarly to PAINT mode, but to paint with background label, which effectively removes the label. """ return Layer.mode.fget(self) # Only overriding to change the docstring of the setter above @mode.setter def mode(self, mode): Layer.mode.fset(self, mode) def _mode_setter_helper(self, mode): mode = super()._mode_setter_helper(mode) if mode == self._mode: return mode self._overlays['polygon'].enabled = mode == Mode.POLYGON if mode in {Mode.PAINT, Mode.ERASE}: self.cursor_size = self._calculate_cursor_size() return mode @property def preserve_labels(self): """Defines if painting should preserve existing labels. Default to false to allow paint on existing labels. When set to true, existing labels will be preserved during painting. """ return self._preserve_labels @preserve_labels.setter def preserve_labels(self, preserve_labels: bool): self._preserve_labels = preserve_labels self.events.preserve_labels(preserve_labels=preserve_labels) def _reset_editable(self) -> None: self.editable = not self.multiscale def _on_editable_changed(self) -> None: if not self.editable: self.mode = Mode.PAN_ZOOM self._reset_history() @staticmethod def _to_vispy_texture_dtype(data): """Convert data to a dtype that can be used as a VisPy texture. Labels layers allow all integer dtypes for data, but only a subset are supported by VisPy textures. For now, we convert all data to float32 as it can represent all input values (though not losslessly, see https://github.com/napari/napari/issues/6084). """ return vispy_texture_dtype(data) def _update_slice_response(self, response: _ImageSliceResponse) -> None: """Override to convert raw slice data to displayed label colors.""" response = response.to_displayed(self._raw_to_displayed) super()._update_slice_response(response) def _partial_labels_refresh(self): """Prepares and displays only an updated part of the labels.""" if self._updated_slice is None or not self.loaded: return dims_displayed = self._slice_input.displayed raw_displayed = self._slice.image.raw # Keep only the dimensions that correspond to the current view updated_slice = tuple( self._updated_slice[index] for index in dims_displayed ) offset = [axis_slice.start for axis_slice in updated_slice] if self.contour > 0: colors_sliced = self._raw_to_displayed( raw_displayed, data_slice=updated_slice ) else: colors_sliced = self._slice.image.view[updated_slice] # The next line is needed to make the following tests pass in # napari/_vispy/_tests/: # - test_vispy_labels_layer.py::test_labels_painting # - test_vispy_labels_layer.py::test_labels_fill_slice # See https://github.com/napari/napari/pull/6112/files#r1291613760 # and https://github.com/napari/napari/issues/6185 self._slice.image.view[updated_slice] = colors_sliced self.events.labels_update(data=colors_sliced, offset=offset) self._updated_slice = None def _calculate_contour( self, labels: np.ndarray, data_slice: tuple[slice, ...] ) -> Optional[np.ndarray]: """Calculate the contour of a given label array within the specified data slice. Parameters ---------- labels : np.ndarray The label array. data_slice : Tuple[slice, ...] The slice of the label array on which to calculate the contour. Returns ------- Optional[np.ndarray] The calculated contour as a boolean mask array. Returns None if the contour parameter is less than 1, or if the label array has more than 2 dimensions. """ if self.contour < 1: return None if labels.ndim > 2: warnings.warn( trans._( 'Contours are not displayed during 3D rendering', deferred=True, ) ) return None expanded_slice = expand_slice(data_slice, labels.shape, 1) sliced_labels = get_contours( labels[expanded_slice], self.contour, self.colormap.background_value, ) # Remove the latest one-pixel border from the result delta_slice = tuple( slice(s1.start - s2.start, s1.stop - s2.start) for s1, s2 in zip(data_slice, expanded_slice) ) return sliced_labels[delta_slice] def _raw_to_displayed( self, raw, data_slice: Optional[tuple[slice, ...]] = None ) -> np.ndarray: """Determine displayed image from a saved raw image and a saved seed. This function ensures that the 0 label gets mapped to the 0 displayed pixel. Parameters ---------- raw : array or int Raw integer input image. data_slice : numpy array slice Slice that specifies the portion of the input image that should be computed and displayed. If None, the whole input image will be processed. Returns ------- mapped_labels : array Encoded colors mapped between 0 and 1 to be displayed. """ if data_slice is None: data_slice = tuple(slice(0, size) for size in raw.shape) labels = raw # for readability sliced_labels = self._calculate_contour(labels, data_slice) # lookup function -> self._as_type if sliced_labels is None: sliced_labels = labels[data_slice] return self.colormap._data_to_texture(sliced_labels) def _update_thumbnail(self): """Update the thumbnail with current data and colormap. This is overridden from _ImageBase because we don't need to do things like adjusting gamma or changing the data based on the contrast limits. """ if not self.loaded: # ASYNC_TODO: Do not compute the thumbnail until we are loaded. # Is there a nicer way to prevent this from getting called? return image = self._slice.thumbnail.raw if self._slice_input.ndisplay == 3 and self.ndim > 2: # we are only using the current slice so `image` will never be # bigger than 3. If we are in this clause, it is exactly 3, so we # use max projection. For labels, ideally we would use "first # nonzero projection", but we leave that for a future PR. (TODO) image = np.max(image, axis=0) imshape = np.array(image.shape[:2]) thumbshape = np.array(self._thumbnail_shape[:2]) raw_zoom_factor = np.min(thumbshape / imshape) new_shape = np.clip( raw_zoom_factor * imshape, a_min=1, a_max=thumbshape ) zoom_factor = tuple(new_shape / imshape) downsampled = ndi.zoom(image, zoom_factor, prefilter=False, order=0) color_array = self.colormap.map(downsampled) color_array[..., 3] *= self.opacity self.thumbnail = color_array
[docs] def get_color(self, label): """Return the color corresponding to a specific label.""" if label == self.colormap.background_value: col = None elif label is None or ( self.show_selected_label and label != self.selected_label ): col = self.colormap.map(self.colormap.background_value) else: col = self.colormap.map(label) return col
def _get_value_ray( self, start_point: Optional[np.ndarray], end_point: Optional[np.ndarray], dims_displayed: list[int], ) -> Optional[int]: """Get the first non-background value encountered along a ray. Parameters ---------- start_point : np.ndarray (n,) array containing the start point of the ray in data coordinates. end_point : np.ndarray (n,) array containing the end point of the ray in data coordinates. dims_displayed : List[int] The indices of the dimensions currently displayed in the viewer. Returns ------- value : Optional[int] The first non-zero value encountered along the ray. If none was encountered or the viewer is in 2D mode, None is returned. """ if start_point is None or end_point is None: return None if len(dims_displayed) == 3: # only use get_value_ray on 3D for now # we use dims_displayed because the image slice # has its dimensions in th same order as the vispy # Volume # Account for downsampling in the case of multiscale # -1 means lowest resolution here. start_point = ( start_point[dims_displayed] / self.downsample_factors[-1][dims_displayed] ) end_point = ( end_point[dims_displayed] / self.downsample_factors[-1][dims_displayed] ) start_point = cast(np.ndarray, start_point) end_point = cast(np.ndarray, end_point) sample_ray = end_point - start_point length_sample_vector = np.linalg.norm(sample_ray) n_points = int(2 * length_sample_vector) sample_points = np.linspace( start_point, end_point, n_points, endpoint=True ) im_slice = self._slice.image.raw # ensure the bounding box is for the proper multiscale level bounding_box = self._display_bounding_box_at_level( dims_displayed, self.data_level ) # the display bounding box is returned as a closed interval # (i.e. the endpoint is included) by the method, but we need # open intervals in the code that follows, so we add 1. bounding_box[:, 1] += 1 clamped = clamp_point_to_bounding_box( sample_points, bounding_box, ).astype(int) values = im_slice[tuple(clamped.T)] nonzero_indices = np.flatnonzero(values) if len(nonzero_indices > 0): # if a nonzer0 value was found, return the first one return values[nonzero_indices[0]] return None def _get_value_3d( self, start_point: Optional[np.ndarray], end_point: Optional[np.ndarray], dims_displayed: list[int], ) -> Optional[int]: """Get the first non-background value encountered along a ray. Parameters ---------- start_point : np.ndarray (n,) array containing the start point of the ray in data coordinates. end_point : np.ndarray (n,) array containing the end point of the ray in data coordinates. dims_displayed : List[int] The indices of the dimensions currently displayed in the viewer. Returns ------- value : int The first non-zero value encountered along the ray. If a non-zero value is not encountered, returns 0 (the background value). """ return ( self._get_value_ray( start_point=start_point, end_point=end_point, dims_displayed=dims_displayed, ) or 0 ) def _reset_history(self, event=None): self._undo_history = deque(maxlen=self._history_limit) self._redo_history = deque(maxlen=self._history_limit) self._staged_history = [] self._block_history = False
[docs] @contextmanager def block_history(self): """Context manager to group history-editing operations together. While in the context, history atoms are grouped together into a "staged" history. When exiting the context, that staged history is committed to the undo history queue, and an event is emitted containing the change. """ prev = self._block_history self._block_history = True try: yield self._commit_staged_history() finally: self._block_history = prev
def _commit_staged_history(self): """Save staged history to undo history and clear it.""" if self._staged_history: self._append_to_undo_history(self._staged_history) self._staged_history = [] def _append_to_undo_history(self, item): """Append item to history and emit paint event. Parameters ---------- item : List[Tuple[ndarray, ndarray, int]] list of history atoms to append to undo history. """ self._undo_history.append(item) self.events.paint(value=item) def _save_history(self, value): """Save a history "atom" to the undo history. A history "atom" is a single change operation to the array. A history *item* is a collection of atoms that were applied together to make a single change. For example, when dragging and painting, at each mouse callback we create a history "atom", but we save all those atoms in a single history item, since we would want to undo one drag in one undo operation. Parameters ---------- value : 3-tuple of arrays The value is a 3-tuple containing: - a numpy multi-index, pointing to the array elements that were changed - the values corresponding to those elements before the change - the value(s) after the change """ self._redo_history.clear() if self._block_history: self._staged_history.append(value) else: self._append_to_undo_history([value]) def _load_history(self, before, after, undoing=True): """Load a history item and apply it to the array. Parameters ---------- before : list of history items The list of elements from which we want to load. after : list of history items The list of element to which to append the loaded element. In the case of an undo operation, this is the redo queue, and vice versa. undoing : bool Whether we are undoing (default) or redoing. In the case of redoing, we apply the "after change" element of a history element (the third element of the history "atom"). See Also -------- Labels._save_history """ if len(before) == 0: return history_item = before.pop() after.append(list(reversed(history_item))) for prev_indices, prev_values, next_values in reversed(history_item): values = prev_values if undoing else next_values self.data[prev_indices] = values self.refresh() def undo(self): self._load_history( self._undo_history, self._redo_history, undoing=True ) def redo(self): self._load_history( self._redo_history, self._undo_history, undoing=False )
[docs] def fill(self, coord, new_label, refresh=True): """Replace an existing label with a new label, either just at the connected component if the `contiguous` flag is `True` or everywhere if it is `False`, working in the number of dimensions specified by the `n_edit_dimensions` flag. Parameters ---------- coord : sequence of float Position of mouse cursor in image coordinates. new_label : int Value of the new label to be filled in. refresh : bool Whether to refresh view slice or not. Set to False to batch paint calls. """ int_coord = tuple(np.round(coord).astype(int)) # If requested fill location is outside data shape then return if np.any(np.less(int_coord, 0)) or np.any( np.greater_equal(int_coord, self.data.shape) ): return # If requested new label doesn't change old label then return old_label = np.asarray(self.data[int_coord]).item() if old_label == new_label or ( self.preserve_labels and old_label != self.colormap.background_value ): return dims_to_fill = sorted( self._slice_input.order[-self.n_edit_dimensions :] ) data_slice_list = list(int_coord) for dim in dims_to_fill: data_slice_list[dim] = slice(None) data_slice = tuple(data_slice_list) labels = np.asarray(self.data[data_slice]) slice_coord = tuple(int_coord[d] for d in dims_to_fill) matches = labels == old_label if self.contiguous: # if contiguous replace only selected connected component labeled_matches, num_features = ndi.label(matches) if num_features != 1: match_label = labeled_matches[slice_coord] matches = np.logical_and( matches, labeled_matches == match_label ) match_indices_local = np.nonzero(matches) if self.ndim not in {2, self.n_edit_dimensions}: n_idx = len(match_indices_local[0]) match_indices = [] j = 0 for d in data_slice: if isinstance(d, slice): match_indices.append(match_indices_local[j]) j += 1 else: match_indices.append(np.full(n_idx, d, dtype=np.intp)) else: match_indices = match_indices_local match_indices = _coerce_indices_for_vectorization( self.data, match_indices ) self.data_setitem(match_indices, new_label, refresh)
def _draw(self, new_label, last_cursor_coord, coordinates): """Paint into coordinates, accounting for mode and cursor movement. The draw operation depends on the current mode of the layer. Parameters ---------- new_label : int value of label to paint last_cursor_coord : sequence last painted cursor coordinates coordinates : sequence new cursor coordinates """ if coordinates is None: return interp_coord = interpolate_coordinates( last_cursor_coord, coordinates, self.brush_size ) for c in interp_coord: if ( self._slice_input.ndisplay == 3 and self.data[tuple(np.round(c).astype(int))] == 0 ): continue if self._mode in [Mode.PAINT, Mode.ERASE]: self.paint(c, new_label, refresh=False) elif self._mode == Mode.FILL: self.fill(c, new_label, refresh=False) self._partial_labels_refresh()
[docs] def paint(self, coord, new_label, refresh=True): """Paint over existing labels with a new label, using the selected brush shape and size, either only on the visible slice or in all n dimensions. Parameters ---------- coord : sequence of int Position of mouse cursor in image coordinates. new_label : int Value of the new label to be filled in. refresh : bool Whether to refresh view slice or not. Set to False to batch paint calls. """ shape, dims_to_paint = self._get_shape_and_dims_to_paint() paint_scale = np.array( [self.scale[i] for i in dims_to_paint], dtype=float ) slice_coord = [int(np.round(c)) for c in coord] if self.n_edit_dimensions < self.ndim: coord_paint = [coord[i] for i in dims_to_paint] else: coord_paint = coord # Ensure circle doesn't have spurious point # on edge by keeping radius as ##.5 radius = np.floor(self.brush_size / 2) + 0.5 mask_indices = sphere_indices(radius, tuple(paint_scale)) mask_indices = mask_indices + np.round(np.array(coord_paint)).astype( int ) self._paint_indices( mask_indices, new_label, shape, dims_to_paint, slice_coord, refresh )
[docs] def paint_polygon(self, points, new_label): """Paint a polygon over existing labels with a new label. Parameters ---------- points : list of coordinates List of coordinates of the vertices of a polygon. new_label : int Value of the new label to be filled in. """ shape, dims_to_paint = self._get_shape_and_dims_to_paint() if len(dims_to_paint) != 2: raise NotImplementedError( 'Polygon painting is implemented only in 2D.' ) points = np.array(points, dtype=int) slice_coord = points[0].tolist() points2d = points[:, dims_to_paint] polygon_mask = polygon2mask(shape, points2d) mask_indices = np.argwhere(polygon_mask) self._paint_indices( mask_indices, new_label, shape, dims_to_paint, slice_coord, refresh=True, )
def _paint_indices( self, mask_indices, new_label, shape, dims_to_paint, slice_coord=None, refresh=True, ): """Paint over existing labels with a new label, using the selected mask indices, either only on the visible slice or in all n dimensions. Parameters ---------- mask_indices : numpy array of integer coordinates Mask to paint represented by an array of its coordinates. new_label : int Value of the new label to be filled in. shape : list The label data shape upon which painting is performed. dims_to_paint : list List of dimensions of the label data that are used for painting. refresh : bool Whether to refresh view slice or not. Set to False to batch paint calls. """ dims_not_painted = sorted( self._slice_input.order[: -self.n_edit_dimensions] ) # discard candidate coordinates that are out of bounds mask_indices = indices_in_shape(mask_indices, shape) # Transfer valid coordinates to slice_coord, # or expand coordinate if 3rd dim in 2D image slice_coord_temp = list(mask_indices.T) if self.n_edit_dimensions < self.ndim: for j, i in enumerate(dims_to_paint): slice_coord[i] = slice_coord_temp[j] for i in dims_not_painted: slice_coord[i] = slice_coord[i] * np.ones( mask_indices.shape[0], dtype=int ) else: slice_coord = slice_coord_temp slice_coord = _coerce_indices_for_vectorization(self.data, slice_coord) # slice coord is a tuple of coordinate arrays per dimension # subset it if we want to only paint into background/only erase # current label if self.preserve_labels: if new_label == self.colormap.background_value: keep_coords = self.data[slice_coord] == self.selected_label else: keep_coords = ( self.data[slice_coord] == self.colormap.background_value ) slice_coord = tuple(sc[keep_coords] for sc in slice_coord) self.data_setitem(slice_coord, new_label, refresh) def _get_shape_and_dims_to_paint(self) -> tuple[list, list]: dims_to_paint = sorted(self._get_dims_to_paint()) shape = list(self.data.shape) if self.n_edit_dimensions < self.ndim: shape = [shape[i] for i in dims_to_paint] return shape, dims_to_paint def _get_dims_to_paint(self) -> list: return list(self._slice_input.order[-self.n_edit_dimensions :]) def _get_pt_not_disp(self) -> dict[int, int]: """ Get indices of current visible slice. """ slice_input = self._slice.slice_input point = np.round( self.world_to_data(slice_input.world_slice.point) ).astype(int) return {dim: point[dim] for dim in slice_input.not_displayed}
[docs] def data_setitem(self, indices, value, refresh=True): """Set `indices` in `data` to `value`, while writing to edit history. Parameters ---------- indices : tuple of arrays of int Indices in data to overwrite. Must be a tuple of arrays of length equal to the number of data dimensions. (Fancy indexing in [2]_). value : int or array of int New label value(s). If more than one value, must match or broadcast with the given indices. refresh : bool, default True whether to refresh the view, by default True References ---------- .. [2] https://numpy.org/doc/stable/user/basics.indexing.html """ changed_indices = self.data[indices] != value indices = tuple(x[changed_indices] for x in indices) if isinstance(value, Sequence): value = np.asarray(value, dtype=self._slice.image.raw.dtype) else: value = self._slice.image.raw.dtype.type(value) # Resize value array to remove unchanged elements if isinstance(value, np.ndarray): value = value[changed_indices] if not indices or indices[0].size == 0: return self._save_history( ( indices, np.array(self.data[indices], copy=True), value, ) ) # update the labels image self.data[indices] = value pt_not_disp = self._get_pt_not_disp() displayed_indices = index_in_slice( indices, pt_not_disp, self._slice.slice_input.order ) if isinstance(value, np.ndarray): visible_values = value[elements_in_slice(indices, pt_not_disp)] else: visible_values = value if not ( # if not a numpy array or numpy-backed xarray isinstance(self.data, np.ndarray) or isinstance(getattr(self.data, 'data', None), np.ndarray) ): # In the absence of slicing, the current slice becomes # invalidated by data_setitem; only in the special case of a NumPy # array, or a NumPy-array-backed Xarray, is the slice a view and # therefore updated automatically. # For other types, we update it manually here. self._slice.image.raw[displayed_indices] = visible_values # tensorstore and xarray do not return their indices in # np.ndarray format, so they need to be converted explicitly if not isinstance(self.data, np.ndarray): indices = [np.array(x).flatten() for x in indices] updated_slice = tuple( [ slice(min(axis_indices), max(axis_indices) + 1) for axis_indices in indices ] ) if self.contour > 0: # Expand the slice by 1 pixel as the changes can go beyond # the original slice because of the morphological dilation # (1 pixel because get_countours always applies 1 pixel dilation) updated_slice = expand_slice(updated_slice, self.data.shape, 1) else: # update data view self._slice.image.view[displayed_indices] = ( self.colormap._data_to_texture(visible_values) ) if self._updated_slice is None: self._updated_slice = updated_slice else: self._updated_slice = tuple( [ slice(min(s1.start, s2.start), max(s1.stop, s2.stop)) for s1, s2 in zip(updated_slice, self._updated_slice) ] ) if refresh is True: self._partial_labels_refresh()
[docs] def get_status( self, position: Optional[npt.ArrayLike] = None, *, view_direction: Optional[npt.ArrayLike] = None, dims_displayed: Optional[list[int]] = None, world: bool = False, ) -> dict: """Status message information of the data at a coordinate position. Parameters ---------- position : tuple Position in either data or world coordinates. view_direction : Optional[np.ndarray] A unit vector giving the direction of the ray in nD world coordinates. The default value is None. dims_displayed : Optional[List[int]] A list of the dimensions currently being displayed in the viewer. The default value is None. world : bool If True the position is taken to be in world coordinates and converted into data coordinates. False by default. Returns ------- source_info : dict Dict containing a information that can be used in a status update. """ if position is not None: value = self.get_value( position, view_direction=view_direction, dims_displayed=dims_displayed, world=world, ) else: value = None source_info = self._get_source_info() pos = position if pos is not None: pos = np.asarray(pos)[-self.ndim :] source_info['coordinates'] = generate_layer_coords_status(pos, value) # if this labels layer has properties properties = self._get_properties( position, view_direction=np.asarray(view_direction), dims_displayed=dims_displayed, world=world, ) if properties: source_info['coordinates'] += '; ' + ', '.join(properties) return source_info
def _get_tooltip_text( self, position, *, view_direction: Optional[np.ndarray] = None, dims_displayed: Optional[list[int]] = None, world: bool = False, ): """ tooltip message of the data at a coordinate position. Parameters ---------- position : tuple Position in either data or world coordinates. view_direction : Optional[np.ndarray] A unit vector giving the direction of the ray in nD world coordinates. The default value is None. dims_displayed : Optional[List[int]] A list of the dimensions currently being displayed in the viewer. The default value is None. world : bool If True the position is taken to be in world coordinates and converted into data coordinates. False by default. Returns ------- msg : string String containing a message that can be used as a tooltip. """ return '\n'.join( self._get_properties( position, view_direction=view_direction, dims_displayed=dims_displayed, world=world, ) ) def _get_properties( self, position, *, view_direction: Optional[np.ndarray] = None, dims_displayed: Optional[list[int]] = None, world: bool = False, ) -> list: if len(self._label_index) == 0 or self.features.shape[1] == 0: return [] value = self.get_value( position, view_direction=view_direction, dims_displayed=dims_displayed, world=world, ) # if the cursor is not outside the image or on the background if value is None: return [] label_value = value[1] if self.multiscale else value if label_value not in self._label_index: return [trans._('[No Properties]')] idx = self._label_index[label_value] return [ f'{k}: {v[idx]}' for k, v in self.features.items() if k != 'index' and len(v) > idx and v[idx] is not None and not (isinstance(v[idx], float) and np.isnan(v[idx])) ]
def _coerce_indices_for_vectorization(array, indices: list) -> tuple: """Coerces indices so that they can be used for vectorized indexing in the given data array.""" if _is_array_type(array, 'xarray.DataArray'): # Fix indexing for xarray if necessary # See http://xarray.pydata.org/en/stable/indexing.html#vectorized-indexing # for difference from indexing numpy try: import xarray as xr except ModuleNotFoundError: pass else: return tuple(xr.DataArray(i) for i in indices) return tuple(indices)