Source code for napari.types

from functools import partial, wraps
from pathlib import Path
from types import TracebackType
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    NewType,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

import numpy as np

# TODO decide where types should be defined to have single place for them
from npe2.types import LayerName as LayerTypeName
from typing_extensions import TypedDict, get_args

if TYPE_CHECKING:
    # dask zarr should be imported as `import dask.array as da` But here it is used only in type annotation to
    # register it as a valid type fom magicgui so is passed as string and requires full qualified name to allow
    # magicgui properly register it.
    import dask.array  # noqa: ICN001
    import zarr
    from magicgui.widgets import FunctionGui
    from qtpy.QtWidgets import QWidget  # type: ignore [attr-defined]


__all__ = [
    'ArrayLike',
    'LayerTypeName',
    'FullLayerData',
    'LayerData',
    'PathLike',
    'PathOrPaths',
    'ReaderFunction',
    'WriterFunction',
    'ExcInfo',
    'WidgetCallable',
    'AugmentedWidget',
    'SampleData',
    'SampleDict',
    'ArrayBase',
    'ImageData',
    'LabelsData',
    'PointsData',
    'ShapesData',
    'SurfaceData',
    'TracksData',
    'VectorsData',
    'LayerDataTuple',
    'image_reader_to_layerdata_reader',
]

# This is a WOEFULLY inadequate stub for a duck-array type.
# Mostly, just a placeholder for the concept of needing an ArrayLike type.
# Ultimately, this should come from https://github.com/napari/image-types
# and should probably be replaced by a typing.Protocol
# note, numpy.typing.ArrayLike (in v1.20) is not quite what we want either,
# since it includes all valid arguments for np.array() ( int, float, str...)
ArrayLike = Union[np.ndarray, 'dask.array.Array', 'zarr.Array']

# layer data may be: (data,) (data, meta), or (data, meta, layer_type)
# using "Any" for the data type until ArrayLike is more mature.
FullLayerData = Tuple[Any, Dict, LayerTypeName]
LayerData = Union[Tuple[Any], Tuple[Any, Dict], FullLayerData]

PathLike = Union[str, Path]
PathOrPaths = Union[str, Sequence[str]]
ReaderFunction = Callable[[PathOrPaths], List[LayerData]]
WriterFunction = Callable[[str, List[FullLayerData]], List[str]]

ExcInfo = Union[
    Tuple[Type[BaseException], BaseException, TracebackType],
    Tuple[None, None, None],
]

# Types for GUI HookSpecs
WidgetCallable = Callable[..., Union['FunctionGui', 'QWidget']]
AugmentedWidget = Union[WidgetCallable, Tuple[WidgetCallable, dict]]


# Sample Data for napari_provide_sample_data hookspec is either a string/path
# or a function that returns an iterable of LayerData tuples
SampleData = Union[PathLike, Callable[..., Iterable[LayerData]]]


# or... they can provide a dict as follows:
[docs] class SampleDict(TypedDict): display_name: str data: SampleData
# these types are mostly "intentionality" placeholders. While it's still hard # to use actual types to define what is acceptable data for a given layer, # these types let us point to a concrete namespace to indicate "this data is # intended to be (and is capable of) being turned into X layer type". # while their names should not change (without deprecation), their typing # implementations may... or may be rolled over to napari/image-types ArrayBase: Type[np.ndarray] = np.ndarray ImageData = NewType("ImageData", np.ndarray) LabelsData = NewType("LabelsData", np.ndarray) PointsData = NewType("PointsData", np.ndarray) ShapesData = NewType("ShapesData", List[np.ndarray]) SurfaceData = NewType("SurfaceData", Tuple[np.ndarray, np.ndarray, np.ndarray]) TracksData = NewType("TracksData", np.ndarray) VectorsData = NewType("VectorsData", np.ndarray) _LayerData = Union[ ImageData, LabelsData, PointsData, ShapesData, SurfaceData, TracksData, VectorsData, ] LayerDataTuple = NewType("LayerDataTuple", tuple)
[docs] def image_reader_to_layerdata_reader( func: Callable[[PathOrPaths], ArrayLike] ) -> ReaderFunction: """Convert a PathLike -> ArrayLike function to a PathLike -> LayerData. Parameters ---------- func : Callable[[PathLike], ArrayLike] A function that accepts a string or list of strings, and returns an ArrayLike. Returns ------- reader_function : Callable[[PathLike], List[LayerData]] A function that accepts a string or list of strings, and returns data as a list of LayerData: List[Tuple[ArrayLike]] """ @wraps(func) def reader_function(*args, **kwargs) -> List[LayerData]: result = func(*args, **kwargs) return [(result,)] return reader_function
def _register_types_with_magicgui(): """Register ``napari.types`` objects with magicgui.""" import sys from concurrent.futures import Future from magicgui import register_type from napari.utils import _magicgui as _mgui for type_ in (LayerDataTuple, List[LayerDataTuple]): register_type( type_, return_callback=_mgui.add_layer_data_tuples_to_viewer, ) if sys.version_info >= (3, 9): future_type = Future[type_] # type: ignore [valid-type] register_type(future_type, return_callback=_mgui.add_future_data) for data_type in get_args(_LayerData): register_type( data_type, choices=_mgui.get_layers_data, return_callback=_mgui.add_layer_data_to_viewer, ) if sys.version_info >= (3, 9): register_type( Future[data_type], # type: ignore [valid-type] choices=_mgui.get_layers_data, return_callback=partial( _mgui.add_future_data, _from_tuple=False ), ) register_type( Optional[data_type], # type: ignore [call-overload] choices=_mgui.get_layers_data, return_callback=_mgui.add_layer_data_to_viewer, ) if sys.version_info >= (3, 9): register_type( Future[Optional[data_type]], # type: ignore [valid-type] choices=_mgui.get_layers_data, return_callback=partial( _mgui.add_future_data, _from_tuple=False ), ) _register_types_with_magicgui()